Чему равен ранг матрицы онлайн. Ранг матрицы и базисный минор матрицы

Для того что бы вычислить ранг матрицы можно применить метод окаймляющих миноров или метод Гаусса . Рассмотрим метод Гаусса или метод элементарных преобразований.

Рангом матрицы называют максимальный порядок её миноров, среди которых есть хотя бы один, не равный нулю.

Рангом системы строк (столбцов) называется максимальное количество линейно независимых строк (столбцов) этой системы.

Алгоритм нахождения ранга матрицы методом окаймляющих миноров:

  1. Минор M k-того порядка не равен нулю.
  2. Если окаймляющие миноры для минора M (k+1)-го порядка, составить невозможно (т.е. матрица содержит k строк или k столбцов), то ранг матрицы равен k . Если окаймляющие миноры существуют и все равны нулю, то ранг равен k. Если среди окаймляющих миноров есть хотя бы один, не равный нулю, то пробуем составить новый минор k+2 и т.д.

Разберем алгоритм более подробно. Сначала рассмотрим миноры первого (элементы матрицы) порядка матрицы A . Если все они равны нулю, то rangA = 0 . Если есть миноры первого порядка (элементы матрицы) не равные нулю M 1 ≠ 0 , то ранг rangA ≥ 1 .

M 1 . Если такие миноры есть, то они буду миноры второго порядка. Если все миноры окаймляющие минор M 1 равны нулю, то rangA = 1 . Если есть хоть один минор второго порядка не равные нулю M 2 ≠ 0 , то ранг rangA ≥ 2 .

Проверим есть ли окаймляющие миноры для минора M 2 . Если такие миноры есть, то они буду миноры третьего порядка. Если все миноры окаймляющие минор M 2 равны нулю, то rangA = 2 . Если есть хоть один минор третьего порядка не равные нулю M 3 ≠ 0 , то ранг rangA ≥ 3 .

Проверим есть ли окаймляющие миноры для минора M 3 . Если такие миноры есть, то они буду миноры четвертого порядка. Если все миноры окаймляющие минор M 3 равны нулю, то rangA = 3 . Если есть хоть один минор четвертого порядка не равные нулю M 4 ≠ 0 , то ранг rangA ≥ 4 .

Проверяем есть ли окаймляющий минор для минора M 4 , и так далее. Алгоритм прекращается, если на каком-то этапе окаймляющие миноры равны нулю или окаймляющий минор нельзя получить (в матрице "закончились" строки или столбцы). Порядок не нулевого минора, который получилось составить будет рангом матрицы.

Пример

Рассмотрим данный метод на примере. Дана матрицы 4х5:

У данной матрице ранг не может быть больше 4. Так же у этой матрице есть не нулевые элементы (минор первого порядка), значит ранг матрицы ≥ 1.

Составим минор 2-ого порядка. Начнем с угла.

Так определитель равен нулю, составим другой минор.

Найдем определитель данного минора.

Определить данного минора равен -2 . Значит ранг матрицы ≥ 2 .

Если данный минор был равен 0, то составили бы другие миноры. До конца бы составили все миноры по 1 и второй строке. Потом по 1 и 3 строке, по 2 и 3 строке, по 2 и 4 строке, пока не нашли бы минор не равный 0, например:

Если все миноры второго порядка равны 0, то ранг матрицы был бы равен 1. Решение можно было бы остановить.

3-го порядка.

Минор получился не нулевой. значит ранг матрицы ≥ 3 .

Если бы данный минор был нулевым, то нужно было бы составить другие миноры. Например:

Если все миноры третьего порядка равны 0, то ранг матрицы был бы равен 2. Решение можно было бы остановить.

Продолжим поиска ранга матрицы. Составим минор 4-го порядка.

Найдем определитель этого минора.

Определитель минора получился равный 0 . Построим другой минор.

Найдем определитель этого минора.

Минор получился равным 0 .

Построить минор 5-го порядка не получится, для этого нет строки в данной матрицы. Последний минор не равный нулю был 3-го порядка, значит ранг матрицы равен 3 .

В данной теме нам понадобятся такие понятия как минор матрицы и окаймляющий минор . В теме "Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений" есть подробное пояснение этих понятий.

$$ \left|\begin{array}{cc} -1 & 2 \\ -3 & 0 \end{array} \right|=-1\cdot 0-2\cdot (-3)=6. $$

Итак, существует минор второго порядка, не равный нулю, из чего следует, что $\rang A≥ 2$. Рассмотрим миноры третьего порядка, окаймляющие данный минор второго порядка. Как составить окаймляющий минор? Для этого к набору строк и столбцов, на пересечении которых лежат элементы минора второго порядка, нужно добавить ещё одну строку и ещё один столбец. Вспоминаем, что элементы записанного нами минора второго порядка расположены на пересечении строк №1, №2 и столбцов №1, №2. Добавим к строкам ещё строку №3, а к столбцам - столбец №3. Мы получим минор третьего порядка, элементы которого (они показаны на рисунке синим цветом) лежат на пересечении строк №1, №2, №3 и столбцов №1, №2, №3.

Найдём значение этого минора, используя формулу №2 из темы про :

$$ \left|\begin{array}{ccc} -1 & 2 & 1 \\ -3 & 0 & 5 \\ -5 & 4 & 7 \end{array} \right|=0. $$

Окаймляющий минор равен нулю. О чём это говорит? Это говорит о том, что нам нужно продолжить нахождение окаймляющих миноров. Либо они все равны нулю (и тогда ранг будет равен 2), либо среди них найдётся хотя бы один, отличный от нуля.

Элементы второго окаймляющего минора лежат на пересечении строк №1, №2, №3 и столбцов №1, №2, №4. На рисунке выше элементы этого минора показаны зелёным цветом. Вычислим данный минор, используя всё ту же формулу №2 из темы про вычисление определителей второго и третьего порядков :

$$ \left|\begin{array}{ccc} -1 & 2 & 3 \\ -3 & 0 & 4 \\ -5 & 4 & 10 \end{array} \right|=0. $$

И этот окаймляющий минор равен нулю. Иных окаймляющих миноров нет. Следовательно, все окаймляющие миноры равны нулю. Порядок последнего составленного ненулевого минора равен 2. Вывод: ранг равен 2, т.е. $\rang A=2$.

Ответ : $\rang A=2$.

Пример №2

Найти ранг матрицы $A=\left(\begin{array}{ccccc} 1 & 2 & 0 & 4 & 5\\ 3 & 6 & -2 & -1 & -3\\ -2 & -4 & 2 & 5 & 7\\ -1 & -2 & 2 & 9 & 11 \end{array} \right)$ методом окаймляющих миноров.

Вновь, как и в предыдущем примере, начнём решение с выбора минора второго порядка, не равного нулю. Например, на пересечении строк №1, №2 и столбцов №1, №2 расположены элементы минора $\left|\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right|$, который несложно вычислить, используя формулу №1 из темы про вычисление определителей второго и третьего порядков :

$$ \left|\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right|=1\cdot 6-2\cdot 3=0. $$

Данный минор второго порядка равен нулю, т.е. выбор неудачен. Возьмём иной минор второго порядка. Например, тот, элементы которого расположены на пересечении строк №1, №2 и столбцов №2, №3:

$$ \left|\begin{array}{cc} 2 & 0 \\ 6 & -2 \end{array} \right|=-4. $$

Итак, ненулевой минор второго порядка существует, поэтому $\rang A≥ 2$. Обозначим этот минор как $M_2$ и станем окаймлять его минорами третьего порядка. Например, добавим к строкам и столбцам, на которых расположены элементы $M_2$, ещё строку №3 и столбец №1. Т.е. найдём минор третьего порядка, элементы которого находятся на пересечении строк №1, №2, №3 и столбцов №1, №2, №3. Используем для этого формулу №2 из темы про вычисление определителей второго и третьего порядков . Подробные вычисления я приводить не стану, запишем лишь ответ:

$$ \left|\begin{array}{ccc} 1 & 2 & 0 \\ 3 & 6 & -2 \\ -2 & -4 & 2 \end{array} \right|=0. $$

Рассмотрим минор третьего порядка, элементы которого лежат на пересечении строк №1, №2, №3 и столбцов №2, №3, №4. Этот минор тоже окаймляет $M_2$:

$$ \left|\begin{array}{ccc} 2 & 0 & 4 \\ 6 & -2 & -1 \\ -4 & 2 & 5 \end{array} \right|=0. $$

И вновь минор третьего порядка, окаймляющий $M_2$, равен нулю. Значит, переходим к иному минору третьего порядка. Возьмём минор третьего порядка, элементы которого лежат на пересечении строк №1, №2, №3 и столбцов №2, №3, №5. Этот минор тоже окаймляет $M_2$:

$$ \left|\begin{array}{ccc} 2 & 0 & 5 \\ 6 & -2 & -3 \\ -4 & 2 & 7 \end{array} \right|=4. $$

Итак, среди миноров третьего порядка, окаймляющих $M_2$, есть минор, не равный нулю, откуда следует $\rang A≥ 3$. Обозначим этот ненулевой минор как $M_3$. Элементы минора $M_3$ лежат на пересечении строк №1, №2, №3 и столбцов №2, №3, №5. Станем окаймлять минор $M_3$ минорами четвёртого порядка. Для начала возьмём минор четвёртого порядка, элементы которого лежат на пересечении строк №1, №2, №3, №4 и столбцов №1, №2, №3, №5. Этот минор окаймляет $M_3$. Его значение найти несложно, если использовать, например, разложение по строке или по столбцу :

$$ \left|\begin{array}{cccc} 1 & 2 & 0 & 5\\ 3 & 6 & -2 & -3\\ -2 & -4 & 2 & 7\\ -1 & -2 & 2 & 11 \end{array} \right|=0. $$

Аналогично, рассматривая минор четвёртого порядка, элементы которого расположены на пересечении строк №1, №2, №3, №4 и столбцов №2, №3, №4, №5, получим:

$$ \left|\begin{array}{cccc} 2 & 0 & 4 & 5\\ 6 & -2 & -1 & -3\\ -4 & 2 & 5 & 7\\ -2 & 2 & 9 & 11 \end{array} \right|=0.$$

Иных окаймляющих миноров для минора $M_3$ нет. Все миноры четвёртого порядка, окаймляющие $M_3$, равны нулю. Последний ненулевой минор, т.е. $M_3$, был третьего порядка. Вывод: ранг равен 3, т.е. $\rang A=3$.

Ответ : $\rang A=3$.

Пример №3

Найти ранг матрицы $A=\left(\begin{array}{ccccc} -1 & 3 & 2 & 4 & 1\\ 0 & -2 & 5 & 0 & -3\\ 1 & -5 & 3 & 7 & 6 \end{array} \right)$ методом окаймляющих миноров.

Снова начинаем решение с выбора минора второго порядка, не равного нулю. Например, на пересечении строк №1, №2 и столбцов №1, №2 расположены элементы минора $\left|\begin{array}{cc} -1 & 3 \\ 0 & -2 \end{array} \right|$, который вычисляем, используя формулу №1 из темы про вычисление определителей второго и третьего порядков :

$$ \left|\begin{array}{cc} -1 & 3 \\ 0 & -2 \end{array} \right|=2. $$

Данный минор (обозначим его $M_2$) не равен нулю, посему именно его мы и станем окаймлять минорами третьего порядка. Например, добавим к строкам и столбцам, на которых расположены элементы $M_2$, ещё строку №3 и столбец №3. Т.е. найдём минор третьего порядка, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов №1, №2, №3. Используем для этого формулу №2 из темы про вычисление определителей второго и третьего порядков :

$$ \left|\begin{array}{ccc} -1 & 3 & 2 \\ 0 & -2 & 5 \\ 1 & -5 & 3 \end{array} \right|=0. $$

Этот минор равен нулю, значит нужно переходить к иному окаймляющему минору. Либо все миноры третьего порядка, окаймляющие $M_2$, равны нулю, либо среди них всё-таки найдётся хоть один, отличный от нуля.

Рассмотрим минор третьего порядка, элементы которого лежат на пересечении строк №1, №2, №3 и столбцов №1, №2, №4. Этот минор тоже окаймляет $M_2$:

$$ \left|\begin{array}{ccc} -1 & 3 & 4 \\ 0 & -2 & 0 \\ 1 & -5 & 7 \end{array} \right|=22. $$

Итак, среди миноров третьего порядка, окаймляющих $M_2$, есть хоть один, не равный нулю. Миноры четвёртого порядка мы образовать уже не можем, так как для них потребуется 4 строки, а в матрице $A$ всего 3 строки. Посему, так как последний ненулевой минор был третьего порядка, то ранг равен 3, т.е. $\rang A=3$.

Ответ : $\rang A=3$.

Число r называется рангом матрицы A , если:
1) в матрице A есть минор порядка r , отличный от нуля;
2) все миноры порядка (r+1) и выше, если они существуют, равны нулю.
Иначе, ранг матрицы – это наивысший порядок минора, отличного от нуля.
Обозначения: rangA , r A или r .
Из определения следует, что r – целое положительное число. Для нуль-матрицы считают ранг равным нулю.

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения ранга матрицы . При этом решение сохраняется в формате Word и Excel . см. пример решения .

Инструкция . Выберите размерность матрицы, нажмите Далее.

Выберите размерность матрицы 3 4 5 6 7 x 3 4 5 6 7

Определение . Пусть дана матрица ранга r . Любой минор матрицы, отличный от нуля и имеющий порядок r, называется базисным, а строки и столбцы его составляющие – базисными строками и столбцами.
Согласно этому определению, матрица A может иметь несколько базисных миноров.

Ранг единичной матрицы E равен n (количеству строк).

Пример 1 . Даны две матрицы , и их миноры , . Какой из них можно принять в качестве базисного?
Решение . Минор M 1 =0, поэтому он не может быть базисным ни для одной из матриц. Минор M 2 =-9≠0 и имеет порядок 2, значит его можно принять в качестве базисного матриц A или / и B при условии, что они имеют ранги, равные 2 . Поскольку detB=0 (как определитель с двумя пропорциональными столбцами), то rangB=2 и M 2 можно взять за базисный минор матрицы B. Ранг матрицы A равен 3, в силу того, что detA=-27≠0 и, следовательно, порядок базисного минора этой матрицы должен равняться 3, то есть M 2 не является базисным для матрицы A . Отметим, что у матрицы A единственный базисный минор, равный определителю матрицы A .

Теорема (о базисном миноре). Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов).
Следствия из теоремы.

  1. Всякие (r+1) столбцов (строк) матрицы ранга r линейно зависимы.
  2. Если ранг матрицы меньше числа ее строк (столбцов), то ее строки (столбцы) линейно зависимы. Если rangA равен числу ее строк (столбцов), то строки (столбцы) линейно независимы.
  3. Определитель матрицы A равен нулю тогда и только тогда, когда ее строки (столбцы) линейно зависимы.
  4. Если к строке (столбцу) матрицы прибавить другую строку, (столбец) умноженную на любое число, отличное от нуля, то ранг матрицы не изменится.
  5. Если в матрице зачеркнуть строку (столбец), являющуюся линейной комбинацией других строк (столбцов), то ранг матрицы не изменится.
  6. Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов).
  7. Максимальное число линейно независимых строк совпадает с максимальным числом линейно независимых столбцов.

Пример 2 . Найти ранг матрицы .
Решение. Исходя из определения ранга матрицы, будем искать минор наивысшего порядка, отличный от нуля. Сначала преобразуем матрицу к более простому виду. Для этого первую строку матрицы умножим на (-2) и прибавим ко второй, затем ее же умножим на (-1) и прибавим к третьей.

Пусть задана некоторая матрица :

.

Выделим в этой матрице произвольных строк ипроизвольных столбцов
. Тогда определитель-го порядка, составленный из элементов матрицы
, расположенных на пересечении выделенных строк и столбцов, называется минором-го порядка матрицы
.

Определение 1.13. Рангом матрицы
называется наибольший порядок минора этой матрицы, отличного от нуля.

Для вычисления ранга матрицы следует рассматривать все ее миноры наименьшего порядка и, если хоть один из них отличный от нуля, переходить к рассмотрению миноров старшего порядка. Такой подход к определению ранга матрицы называется методом окаймления (или методом окаймляющих миноров).

Задача 1.4. Методом окаймляющих миноров определить ранг матрицы
.

.

Рассмотрим окаймление первого порядка, например,
. Затем перейдем к рассмотрению некоторого окаймления второго порядка.

Например,
.

Наконец, проанализируем окаймление третьего порядка.

.

Таким образом, наивысший порядок минора, отличного от нуля, равен 2, следовательно,
.

При решении задачи 1.4 можно заметить, что ряд окаймляющих миноров второго порядка отличны от нуля. В этой связи имеет место следующее понятие.

Определение 1.14. Базисным минором матрицы называется всякий, отличный от нуля минор, порядок которого равен рангу матрицы.

Теорема 1.2. (Теорема о базисном миноре). Базисные строки (базисные столбцы) линейно независимы.

Заметим, что строки (столбцы) матрицы линейно зависимы тогда и только тогда, когда хотя бы одну из них можно представить как линейную комбинацию остальных.

Теорема 1.3. Число линейно независимых строк матрицы равно числу линейно независимых столбцов матрицы и равно рангу матрицы.

Теорема 1.4. (Необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель-го порядкабыл равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Вычисление ранга матрицы, основанное на использовании его определения, является слишком громоздкой операцией. Особенно это становится существенным для матриц высоких порядков. В этой связи на практике ранг матрицы вычисляют на основании применения теорем 10.2 - 10.4, а также использования понятий эквивалентности матриц и элементарных преобразований.

Определение 1.15. Две матрицы
иназываются эквивалентными, если их ранги равны, т.е.
.

Если матрицы
иэквивалентны, то отмечают
.

Теорема 1.5. Ранг матрицы не меняется от элементарных преобразований.

Будем называть элементарными преобразованиями матрицы
любые из следующих действий над матрицей:

Замену строк столбцами, а столбцов соответствующими строками;

Перестановку строк матрицы;

Вычеркивание строки, все элементы которой равны нулю;

Умножение какой-либо строки на число, отличное от нуля;

Прибавление к элементам одной строки соответствующих элементов другой строки умноженных на одно и то же число
.

Следствие теоремы 1.5. Если матрица
получена из матрицыпри помощи конечного числа элементарных преобразований, то матрицы
иэквивалентны.

При вычислении ранга матрицы ее следует привести при помощи конечного числа элементарных преобразований к трапециевидной форме.

Определение 1.16. Трапециевидной будем называть такую форму представления матрицы, когда в окаймляющем миноре наибольшего порядка отличного от нуля все элементы, стоящие ниже диагональных, обращаются в нуль. Например:

.

Здесь
, элементы матрицы
обращаются в нуль. Тогда форма представления такой матрицы будет трапециевидной.

Как правило, матрицы к трапециевидной форме приводят при помощи алгоритма Гаусса. Идея алгоритма Гаусса состоит в том, что, умножая элементы первой строки матрицы на соответствующие множители, добиваются, чтобы все элементы первого столбца, расположенные ниже элемента
, превращались бы в нуль. Затем, умножая элементы второго столбца на соответствующие множители, добиваются, чтобы все элементы второго столбца, расположенные ниже элемента
, превращались бы в нуль. Далее поступают аналогично.

Задача 1.5. Определить ранг матрицы путем сведения ее к трапециевидной форме.

.

Для удобства применения алгоритма Гаусса можно поменять местами первую и третью строки.






.

Очевидно, что здесь
. Однако, для приведения результата к более изящному виду можно далее продолжить преобразования над столбцами.








.