Две дифракционные решетки. Оптика. Дифракционная решетка

Важную роль в прикладной оптике играют явления дифракции на отверстиях в форме щели с параллельными краями. При этом использование дифракции света на одной щели в практических целях затруднено из-за слабой видимости дифракционной картины. Широко используются дифракционные решетки.

Дифракционная решетка - спектральный прибор, служащий для разложения света в спектр и измерения длины волны. Различают прозрачные и отражающие решетки. Дифракционная решетка представляет собой совокупность большого числа параллельных штрихов одинаковой формы, нанесенных на плоскую или вогнутую полированную поверхность на одинаковом расстоянии друг от друга.

В прозрачной плоской дифракционной решетке (рис. 17.22) ширина прозрачного штриха равна а, ширина непрозрачного промежутка - Ь. Величина \(d = a + b = \frac{1}{N} \) называется постоянной (периодом) дифракционной решетки, где N - число штрихов на единицу длины решетки.

Пусть плоская монохроматическая волна падает нормально к плоскости решетки (рис. 17.22). По принципу Гюйгенса-Френеля каждая щель является источником вторичных волн, способных интерферировать друг с другом. Получившуюся дифракционную картину можно наблюдать в фокальной плоскости линзы, на которую падает дифрагированный пучок.

Допустим, что свет дифрагирует на щелях под углом \(\varphi.\) Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, для данного направления \(\varphi\) будут одинаковыми в пределах всей дифракционной решетки:

\(\Delta = CF = (a+b)\sin \varphi = d \sin \varphi .\)

В тех направлениях, для которых разность хода равна четному числу полуволн, наблюдается интерференционный максимум. Наоборот, для тех направлений, где разность хода равна нечетному числу полуволн, наблюдается интерференционный минимум. Таким образом, в направлениях, для которых углы \(\varphi\) удовлетворяют условию

\(d \sin \varphi = m \lambda (m = 0,1,2, \ldots),\)

наблюдаются главные максимумы дифракционной картины. Эту формулу часто называют формулой дифракционной решетки. В ней m называется порядком главного максимума. Между главными максимумами располагается (N - 2) слабых побочных максимумов, но на фоне ярких главных максимумов они практически не видны. При увеличении числа штрихов N (шелей) главные максимумы, оставаясь на прежних местах, становятся все более резкими.

При наблюдении дифракции в немонохроматическом (белом) свете все главные максимумы, кроме нулевого центрального максимума, окрашены. Это объясняется тем, что, как видно из формулы \(\sin \varphi = \frac{m \lambda}{d},\) различным длинам волн соответствуют различные углы, на которых наблюдаются интерференционные максимумы. Радужная полоска, содержащая в общем случае семь цветов - от фиолетового до красного (считается от центрального максимума), называется дифракционным спектром.

Ширина спектра зависит от постоянной решетки и увеличивается при уменьшении d. Максимальный порядок спектра определяется из условия \(~\sin \varphi \le 1,\) т.е. \(m_{max} = \frac{d}{\lambda} = \frac{1}{N\lambda}.\)

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 517-518.

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор, состоящий из системы щелей (прозрачных для света участков), и непрозрачных промежутков, которые сравнимы с длиной волны.

Одномерная дифракционная решетка, состоит из параллельных щелей одинаковой ширины, которые лежат в одной плоскости, разделяемых одинаковыми по ширине непрозрачными для света промежутками. Лучшими считаются отражательные дифракционные решетки. Они состоят из совокупности участков, отражающих свет и участков, которые свет рассеивают. Данные решетки представляют собой отшлифованные металлические пластины, на которые рассеивающие свет штрихи нанесены резцом.

Картиной дифракции на решетке — является результат взаимной интерференции волн, идущих ото всех щелей. С помощью дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, подвергшихся дифракции и которые идут от всех щелей.

Характеристикой дифракционной решетки служит ее период. Периодом дифракционной решетки (d) (ее постоянной) называют величину, равную:

где a — ширина щели; b — ширина непрозрачного участка.

Дифракция на одномерной дифракционной решетке

Допустим, что перпендикулярно к плоскости дифракционной решетки падает световая волна с длиной . Так как щели у решетки расположены на равных расстояниях друг от друга, то разности хода лучей (), идущих от двух соседних щелей, для направления будут одинаковы для всей рассматриваемой дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Кроме главных минимумов, в результате взаимной интерференции лучей света, которые идут от двух щелей, в некоторых направлениях лучи гасят друг друга. В результате возникают дополнительные минимумы интенсивности. Они появляются в тех направлениях, где разность хода лучей составляют нечетное число полуволн. Условием дополнительных минимумов является формула:

где N - количество щелей дифракционной решетки; — целые значения кроме 0, В том случае, если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки является:

Величина синуса не может быть больше единицы, то количество главных максимумов:

Примеры решения задач по теме «Дифракционная решетка»

ПРИМЕР 1

Задание На дифракционную решетку, перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны . На плоский экран картина дифракции проецируется при помощи линзы. Расстояние между двумя максимумами интенсивности первого порядка составляет l. Какова постоянная дифракционной решетки, если линза размещена в непосредственной близости от решетки и расстояние от нее до экрана равно L. Считайте, что


Решение В качестве основы для решения задачи используем формулу, которая связывает постоянную дифракционной решетки, длину волны света и угол отклонения лучей, который соответствует дифракционному максимуму номер m:

По условию задачи Так как угол отклонения лучей можно считать малым (), то примем, что:

Из рис.1 следует, что:

Подставим в формулу (1.1) выражение (1.3) и учтем, что , получим:

Из (1.4) выразим период решетки:

Ответ

ПРИМЕР 2

Задание Используя условия примера 1, и результат решения, найдите количество максимумов, которое даст рассматриваемая решетка.
Решение Для того чтобы определить максимальный угол отклонения лучей света в нашей задаче найдем число максимумов, которое может дать наша дифракционная решетка. Для этого используем формулу:

где положим, что при . Тогда, получим:

Дифракционная решетка –оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равностоящих друг от друга щелей. Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места – щели – будут пропускать свет, штрихи – рассеивать и не пропускать (рис. 3).

Рис. 3. Сечение дифракционной решетки (а) и ее графическое изображение (б)

Для вывода формулы рассмотрим дифракционную решетку при условии перпендикулярного падения света (рис. 4). Выберем два параллельных луча, прошедших две щели и направленных под углом φ к нормали.

С помощью собирающей линзы (глаза) эти два луча попадут в одну точку фокальной плоскости Р и результат их интерференции будет зависеть от разности фаз или от их разности хода. Если линза стоит перпендикулярно лучам, то разность хода будет определяться отрезком ВС, где АС – перпендикуляр к лучам А и В. В треугольнике АВС имеем: АВ = а + b = d – период решетки, ВАС = φ, как углы с взаимно перпендикулярными сторонами.

Из формул (8) и (9) получим формулу дифракционной решетки :

Рис. 4. Дифракция света на дифракционной решетке

Т.е. положение световой линии в дифракционном спектре не зависит от вещества решетки, а определяется периодом решетки, который равен сумме ширины щели и промежутка между щелями.

Разрешающая способность дифракционной решетки.

Если свет, падающий на дифракционную решетку полихроматический, т.е. состоит из нескольких длин волн, то в спектре максимумы отдельных  будут под разнымиуглами. Характеризовать разрешение можно угловой дисперсией:

Следовательно, угловая дисперсия тем больше, чем больше порядок спектра k.

II. Работа студентов во время практического занятия.

Задание 1.

Получить допуск к занятию. Для этого необходимо:

– иметь конспект в рабочей тетради, содержащий название работы, основные теоретические понятия изучаемой темы, задачи эксперимента, таблицу по образцу для внесения экспериментальных результатов;

– успешно пройти контроль по методике проведения эксперимента;

– получить у преподавателя разрешение выполнять экспериментальную часть работы.

Задание 2.

Выполнение лабораторной работы, обсуждение полученных результатов, оформление конспекта.

Приборы и принадлежности

Рис. 5 Схема установки

1. Дифракционная решетка.

2. Источник света.

4. Линейка.

В данной лабораторной работе предлагается определить длины волн для красного и зеленого цветов, которые получаются при прохождении света через дифракционную решетку. При этом на экране наблюдается дифракционный спектр. Дифракционная решетка состоит из большого числа параллельных щелей, очень малых по сравнению с длиной волны. Щели позволяют проходить свету, в то время как пространство между щелями непрозрачно. Общее количество щелей – N, с расстоянием между их центрами – d. Формула дифракционной решетки:

где d – период решетки; sin φ – синус угла отклонения от прямолинейного распространения света; k – порядок максимума; λ – длина волны света.

Экспериментальная установка состоит из дифракционной решетки, источника света и подвижного экрана с линейкой. На экране наблюдается дифракционный спектр (рис. 5).

Расстояние от дифракционной решетки до экрана L может изменяться перемещением экрана. Расстояние от центрального луча света до отдельной линии спектра l. При малых углах φ.

Продолжая рассуждения для пяти, шести щелей и т. д., можно установить следующее правило: при наличии щелей между двумя соседними максимумами образуется минимумов; разность хода лучей от двух соседних щелей для максимумов должна равняться целому числу X, а для минимумов - Дифракционный спектр от щелей имеет вид, показанный на рис Дополнительные максимумы, расположенные между двумя соседними минимумами, создают на экране весьма слабую освещенность (фон).

Основная часть энергии световой волны, прошедшей через дифракционную решетку, перераспределяется между главными максимумами, образующимися в направлениях где 3, называется «порядком» максимума.

Очевидно, чем больше число щелей тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

Если свет, падающий на дифракционную решетку, состоит из двух монохроматических излучений с длинами волн и их главные максимумы расположатся в различных местах экрана. Для очень близких друг к другу длин волн (одноцветные излучения) максимумы на экране могут получиться настолько близко друг к другу, что сольются в одну общую светлую полосу (рис. IV.27, б). Если же вершина одного максимума совпадает или находится дальше (а) ближайшего минимума второй волны, то по распределению освещенности на экране можно уверенно установить наличие двух волн (или, как говорят, «разрешить» эти волны).

Выведем условие разрешимости двух волн: максимум (т. е. максимум порядка) волны получится, согласно формуле (1.21), под углом удовлетворяющим условию Предельное условие разрешимости требует, чтобы под этим же углом получился

минимум волны ближайшей к его максимуму (рис. IV.27, в). Согласно сказанному выше, для получения ближайшего минимума к разности хода следует прибавить дополнительно Таким образом, условие совпадения углов под которыми получаются максимум и минимум приводит к соотношению

Если больше, чем произведение числа щелей на порядок спектра то максимумы не будут разрешаться. Очевидно, если два максимума не разрешаются в спектре порядка, то они могут быть разрешены в спектре более высоких порядков. Согласно выражению (1.22), чем больше число интерферирующих между собой пучков и чем больше разность хода А между ними тем более близкие волны могут быть разрешены.

У дифракционной решетки т. е. число щелей, велико, но порядок спектра который можно использовать для измерительных целей, мал; у интерферометра Майкельсона, наоборот, число интерферирующих пучков равно двум, но разность хода между ними, зависящая от расстояний до зеркал (см. рис. IV. 14), велика, поэтому порядок наблюдаемого спектра измеряется очень большими числами.

Угловое расстояние между двумя соседними максимумами двух близких волн зависит от порядка спектра и периода решетки

Период решетки можно заменить на число щелей приходящихся на единицу длины решетки:

Выше предполагалось, что лучи, падающие на дифракционную решетку, перпендикулярны ее плоскости. При наклонном падении лучей (см. рис. IV.22, б) нулевой максимум будет смещен и получится в направлении Допустим, что максимум порядка получается в направлении т. е. разность хода лучей и равна Тогда Так как при малых углы

Близки друг к другу по величине, то следовательно,

где есть угловое отклонение максимума от нулевого. Сравним эту формулу с выражением (1.21), которую запишем в виде так как то угловое отклонение при наклонном падении оказывается больше, чем при перпендикулярном падении лучей. Это соответствует уменьшению периода решетки в а раз. Следовательно, при больших углах падения а можно получить дифракционные спектры от коротковолнового (например, рентгеновского) излучения и измерить их длины волн.

Если плоская световая волна проходит не через щели, а через круглые отверстия малого диаметра (рис. IV.28), то дифракционный спектр (на плоском экране, расположенном в фокальной плоскости линзы) представляет собой систему чередующихся темных и светлых колец. Первое темное кольцо получается под углом удовлетворяющим условию

У второго темного кольца На долю центрального светлого круга, называемого пятном Эйри, приходится около 85% всей мощности излучения, прошедшей через отверстие и линзу; остальные 15% распределяются между светлыми кольцами, окружающими это пятно. Размеры пятна Эйри зависят от и фокусного расстояния линзы.

Дифракционные решетки, которые рассматривались выше, состояли из чередующихся «щелей», полностью пропускающих световую волну, и «непрозрачных полосок», которые полностью поглощают или отражают падающее на них излучение. Можно сказать, что в таких решетках коэффициент пропускания световой волны имеет только два значения: на протяжении щели он равен единице, а на протяжении непрозрачной полоски - нулю. Поэтому на границе межд щелью и полоской коэффициент пропускания скачкообразно изменяется от единицы до нуля.

Однако можно изготовить дифракционные решетки и с другим распределением коэффициента пропускания. Например, если на прозрачную пластинку (или пленку) нанести поглощающий слой с периодически изменяющейся толщиной, то вместо чередования совершенно

прозрачных щелей и совершенно непрозрачных полосок можно получить дифракционную решетку с плавным изменением коэффициента пропускания (в направлении, перпендикулярном щелям или полоскам). Особый интерес представляют решетки, у которых коэффициент пропускания изменяется по синусоидальному закону. Дифракционный спектр таких решеток состоит не из множества максимумов (как это показано для обычных решеток на рис. IV.26), а только из центрального максимума и двух симметрично расположенных максимумов первого порядка

Для сферической волны можно изготовить дифракционные решетки, состоящие из множества концентрических кольцевых щелей, разделенных непрозрачными кольцами. Можно, например, на стеклянную пластинку (или на прозрачную пленку) нанести тушью концентрические кольца; при этом центральный круг, охватывающий центр этих колец, может быть либо прозрачным, либо затушеванным. Такие дифракционные решетки называются «зонными пластинками» или решетками. У дифракционных решеток, состоящих из прямолинейных щелей и полосок, для получения отчетливой интерференционной картины было необходимо постоянство ширины щели и периода решетки; у зонных пластинок для этой цели должны быть рассчитаны необходимые радиусы и толщины колец. Зонные решетки также могут быть изготовлены с плавным, например синусоидальным, изменением коэффициента пропускания вдоль радиуса.

ДИФРАКЦИОННАЯ РЕШЁТКА, совокупность большого числа регулярно расположенных элементов (штрихов, щелей, канавок, выступов), на которых происходит дифракция света. Дифракционная решетка способна разлагать падающий на неё свет в спектр, поэтому она используется в спектральных приборах в качестве диспергирующего элемента. Обычно штрихи наносят на стеклянную или металлическую, плоскую или вогнутую поверхность. Штрихи с постоянным для данной решётки профилем повторяются через одинаковый промежуток d, называемый периодом дифракционной решетки. Различают пропускательные и отражательные дифракционные решетки, которые в зависимости от того, что изменяется - амплитуда или фаза световой волны, делятся на амплитудные и фазовые. Простейшая пропускательная амплитудная дифракционная решетка представляет собой ряд щелей в непрозрачном экране (рисунок 1, а), отражательная амплитудная дифракционная решетка - систему штрихов, нанесённых на плоское или вогнутое зеркало (рисунок 1, б). Фазовая дифракционная решетка может иметь вид профилированной стеклянной пластины (пропускательная дифракционная решетка, рисунок 1, в) или профилированного зеркала (отражательная дифракционная решетка, рисунок 1, г). В современных приборах применяются главным образом отражательные фазовые дифракционные решётки.

При падении монохроматического коллимированного пучка света с длиной волны λ под углом α на дифракционную решетку с периодом d (рисунок 2), состоящую из щелей шириной b, разделённых непрозрачными промежутками, происходит интерференция вторичных волн, исходящих из разных щелей. В результате после фокусировки на экране образуются максимумы интенсивности, положение которых определяется уравнением d(sin α + sin β) = mλ, где β - угол между нормалью к дифракционной решетке и направлением распространения дифракционного пучка (угол дифракции); m = 0, ±1, ±2, ±3, ... - число длин волн, на которое волна от некоторого элемента дифракционной решетки отстаёт от волны, исходящей от соседнего элемента решётки (или опережает её). Монохроматические пучки, относящиеся к разным значениям m, называются порядком спектра, а создаваемые ими изображения входной щели - спектральными линиями М 1 . Все порядки, соответствующие положительным и отрицательным m, симметричны относительно нулевого. Чем больше щелей имеет дифракционная решетка, тем уже и резче спектральные линии. Если на дифракционную решетку падает белый свет, то для каждой длины волны получится свой набор спектральных линий М 2 , то есть излучение будет разложено в спектры по числу возможных значений m. Относительная интенсивность линий определяется функцией распределения энергии от отдельных щелей.

Основными характеристиками дифракционной решетки являются угловая дисперсия и разрешающая способность. Угловая дисперсия dβ/dλ = m/dcos β характеризует степень углового разделения лучей с разной длиной волны. Разрешающая сила R дифракционной решетки, характеризующая минимальный интервал длин волн δλ, который может разделить данная дифракционная решетка, определяется выражением R = λ/δλ = mN = Nd(sin α + sin β)/λ (N - число штрихов решётки). При заданных углах разрешающую способность можно увеличить только за счёт увеличения ширины всей дифракционной решетки Nd. Область дисперсии дифракционной решетки, то есть величина спектрального интервала Δλ, в котором спектр данного порядка не перекрывается спектрами соседних порядков, удовлетворяет соотношению Δλ = λ/m.

Дифракционные решетки, используемые для работы в разных областях спектра, различаются размерами, формой, профилем штрихов, их частотой (от 6000 штрихов/мм в рентгеновской области до 0,25 штрихов/мм в инфракрасной). По способу изготовления дифракционные решетки делятся на нарезные (оригинальные), реплики (копии с оригинальных дифракционных решеток) и голографические. Оригинальные нарезные дифракционные решетки изготовляются с помощью специальной делительной машины с алмазным резцом, профиль которого определяет форму штриха. Изготовление реплик состоит в получении отпечатков дифракционной решетки на пластмассах с последующим нанесением на них отражающего металлического слоя. При изготовлении голографической дифракционной решетки на светочувствительном материале записывается интерференция двух когерентных лазерных пучков.

Дифракционные решетки используются не только в спектрографах. Они применяются в качестве селективно отражающих зеркал лазеров с перестраиваемой частотой излучения, а также в устройствах, обеспечивающих компрессию световых импульсов.

Для управления параметрами лазерного излучения используются фазовые решётки, представляющие собой регулярные области сжатий и разрежений в жидкостях или прозрачных твёрдых телах, сформированные путём возбуждения в них УЗ-волны.

Лит.: Борн М., Вольф Э. Основы оптики. 2-е изд. М., 1973; Лебедева В. В. Экспериментальная оптика. 3-е изд. М., 1994; Ахманов С. А., Никитин С. Ю. Физическая оптика. 2-е изд. М., 2004; Сивухин Д. В. Общий курс физики. 3-е изд. М., 2006. Т. 4: Оптика.