Интерфейс usb принцип работы. USB: виды разъемов и кабелей для смартфона. Трудный выбор кабелей

Интерфейс USB (Universal Serial Bus - Универсальный Последовательный Интерфейс) предназначен для подключения периферийных устройств к персональному компьютеру. Позволяет производить обмен информацией с периферийными устройствами на трех скоростях (спецификация USB 2.0 ):

  • Низкая скорость (Low Speed - LS) - 1,5 Мбит/с;
  • Полная скорость (Full Speed - FS) - 12 Мбит/с;
  • Высокая скорость (High Speed - HS) - 480 Мбит/с.
Для подключения периферийных устройств используется 4-жильный кабель: питание +5 В, сигнальные провода D+ и D- , общий провод.
Интерфейс USB соединяет между собой хост (host ) и устройства. Хост находится внутри персонального компьютера и управляет работой всего интерфейса. Для того, чтобы к одному порту USB можно было подключать более одного устройства, применяются хабы (hub - устройство, обеспечивающее подключение к интерфейсу других устройств). Корневой хаб (root hub ) находится внутри компьютера и подключен непосредственно к хосту. В интерфейсе USB используется специальный термин "функция" - это логически законченное устройств, выполняющее какую-либо специфическую функцию. Топология интерфейса USB представляет собой набор из 7 уровней (tier ): на первом уровне находится хост и корневой хаб, а на последнем - только функции. Устройство, в состав которого входит хаб и одна или несколько функций, называется составным (compaund device ).
Порт хаба или функции, подключаемый к хабу более высокого уровня, называется восходящим портом (upstream port ), а порт хаба, подключаемый к хабу более низкого уровня или к функции называется нисходящим портом (downstream port ).
Все передачи данных по интерфейсу иницируются хостом. Данные передаются в виде пакетов. В интерфейсе USB испольуется несколько разновидностей пакетов:
  • пакет-признак (token paket ) описывает тип и направление передачи данных, адрес устройства и порядковый номер конечной точки (КТ - адресуемая часть USB-устройства); пакет-признаки бывают нескольких типов: IN , OUT , SOF , SETUP ;
  • пакет с данными (data packet ) содержит передаваемые данные;
  • пакет согласования (handshake packet ) предназначен для сообщения о результатах пересылки данных; пакеты согасования бывают нескольких типов: ACK , NAK , STALL .
Таким образом каждая транзакция состоит из трех фаз: фаза передачи пакета-признака, фаза передачи данных и фаза согласования.
В интерфейсе USB используются несколько типов пересылок информации.
  • Управляющая пересылка (control transfer ) используется для конфигурации устройства, а также для других специфических для конкретного устройства целей.
  • Потоковая пересылка (bulk transfer ) используется для передачи относительно большого объема информации.
  • Пересылка с прерыванием (iterrupt transfer ) испольуется для передачи относительно небольшого объема информации, для которого важна своевременная его пересылка. Имеет ограниченную длительность и повышенный приоритет относительно других типов пересылок.
  • Изохронная пересылка (isochronous transfer ) также называется потоковой пересылкой реального времени. Информация, передаваемая в такой пересылке, требует реального масштаба времени при ее создании, пересылке и приеме.

Потоковые пересылки характеризуются гарантированной безошибочной передачей данных между хостом и функцией посредством обнаружения ошибок при передаче и повторного запроса информации.
Когда хост становится готовым принимать данные от функции, он в фазе передачи пакета-признака посылает функции IN -пакет. В ответ на это функция в фазе передачи данных передает хосту пакет с данными или, если она не может сделать этого, передает NAK - или STALL -пакет. NAK -пакет сообщает о временной неготовности функции передавать данные, а STALL -пакет сообщает о необходимости вмешательства хоста. Если хост успешно получил данные, то он в фазе согласования посылает функции ACK
Когда хост становится готовым передавать данные, он посылает функции OUT -пакет, сопровождаемый пакетом с данными. Если функция успешно получила данные, он отсылает хосту ACK -пакет, в противном случае отсылается NAK- или STALL -пакет.
Управляющие пересылки содержат не менее двух стадий: Setup-стадия и статусная стадия . Между ними может также располагаться стадия передачи данных . Setup-стадия используется для выполнения SETUP-транзакции , в процессе которой пересылается информация в управляющую КТ функции. SETUP-транзакция содержит SETUP -пакет, пакет с данным и пакет согласования. Если пакет с данными получен функцией успешно, то она отсылает хосту ACK -пакет. В противном случае транзакция завершается.
В стадии передачи данных управляющие пересылки содержат одну или несколько IN- или OUT- транзакций, принцип передачи которых такой же, как и в потоковых пересылках. Все транзакции в стадии передачи данных должны производиться в одном направлении.
В статусной стадии производится последняя транзакция, которая использует те же принципы, что и в потоковых пересылках. Направление этой транзакции противоположно тому, которое использовалось в стадии передачи данных. Статусная стадия служит для сообщения о результате выполнения SETUP-стадии и стадии передачи данных. Статусная информация всегда передается от функции к хосту. При управляющей записи (Control Write Transfer ) статусная информация передается в фазе передачи данных статусной стадии транзакции. При управляющем чтении (Control Read Transfer ) статусная информация возвращается в фазе согласовании статусной стадии транзакции, после того как хост отправит пакет данных нулевой длины в предыдущей фазе передачи данных.
Пересылки с прерыванием могут содержать IN - или OUT -пересылки. При получении IN -пакета функция может вернуть пакет с данными, NAK -пакет или STALL -пакет. Если у функции нет информации, для которой требуется прерывание, то в фазе передачи данных функция возвращает NAK -пакет. Если работа КТ с прерыванием приостановлена, то функция возвращает STALL -пакет. При необходимости прерывания функция возвращает необходимую информацию в фазе передачи данных. Если хост успешно получил данные, то он посылает ACK -пакет. В противном случае согласующий пакет хостом не посылается.
Изохронные транзакции содержат фазу передачи признака и фазу передачи данных , но не имеют фазы согласования . Хост отсылает IN - или OUT -признак, после чего в фазе передачи данных КТ (для IN -признака) или хост (для OUT -признака) пересылает данные. Изохронные транзакции не поддерживают фазу согласования и повторные посылки данных в случае возникновения ошибок.

В связи с тем, что в интерфейсе USB реализован сложный протокол обмена информацией, в устройстве сопряжения с интерфейсом USB необходим микропроцессорный блок, обеспечивающий поддержку протокола. Поэтому основным вариантом при разработке устройства сопряжения является применение микроконтроллера, который будет обеспечивать поддержку протокола обмена. В настоящее время все основные производители микроконтроллеров выпускают продукцию, имеющую в своем составе блок USB.

Фирма-производитель Наименование Описание

Atmel
AT43301 Контроллер LS/FS-хаба 1-4 с общим управлением питанием нисходящих портов.
AT43312A Контроллер LS/FS-хаба 1-4 с индивидуальным управлением питанием нисходящих портов.
AT43320A Микроконтроллер на ядре AVR. Имеет встроенные USB-функцию и хаб с 4 внешними нисходящими портами, работающие в LS/FS-режимах, 512 байт ОЗУ, 32х8 регистров общего назначения, 32 программируемых вывода, последовательный и SPI-интерфейсы. Функция имеет 3 КТ с буферами FIFO размером 8 байт. Для нисходящих портов хаба предусмотрено индивидуальное управление питанием.
AT43321 Контроллер клавиатуры на ядре AVR. Имеет встроенные USB-функцию и хаб с 4 внешними нисходящими портами, работающие в LS/FS-режимах, 512 байт ОЗУ, 16 кбайт ПЗУ, 32х8 регистров общего назначения, 20 программируемых вывода, последовательный и SPI-интерфейсы. Функция имеет 3 КТ. Для нисходящих портов хаба предусмотрено индивидуальное управление питанием.
AT43324

Микроконтроллер на ядре AVR. Имеет встроенные USB-функцию и хаб с 2 внешними нисходящими портами, работающие в LS/FS-режимах, 512 байт ОЗУ, 16 кбайт ПЗУ, 32х8 регистров общего назначения, 34 программируемых вывода. Клавиатурная матрица может иметь размер 18х8. Контроллер имеет 4 выхода для подключения светодиодов. Функция имеет 3 КТ. Для нисходящих портов хаба предусмотрено индивидуальное управление питанием.

AT43355 Микроконтроллер на ядре AVR. Имеет встроенные USB-функцию и хаб с 2 внешними нисходящими портами, работающие в LS/FS-режимах, 1 кбайт ОЗУ, 24 кбайт ПЗУ, 32х8 регистров общего назначения, 27 программируемых выводов, последовательный и SPI-интерфейсы, 12-канальный 10-разрядный АЦП. Функция имеет 1 управлющую КТ и 3 программируемых КТ с буферами FIFO размером 64/64/8 байт.
Fairchild Semiconductor USB100 Контроллер манипуляторов (мышь, трекбол, джойстик). Поддерживает 2D/3D-мышь, джойстик с тремя потенциометрами, манипулятор с 16 кнопками.

Intel
8x931Ax Микроконтроллер с архитектурой MSC-51. Имеет встроенную USB-функцию, работающую в LS/FS-режимах, 256 байт ОЗУ, 0/8 кбайт ПЗУ, 8х4 регистра общего назначения, 32 программируемых вывода, последовательный интерфейс, интерфейс управления клавиатурой. Функция имеет 3 КТ с буферами FIFO размером 8/16/8 байт.
8x931Hx Микроконтроллер с архитектурой MSC-51. Имеет встроенную USB-функцию и хаб с 4 внешними нисходящими портами, работающие в LS/FS-режимах, 256 байт ОЗУ, 0/8 кбайт ПЗУ, 8х4 регистра общего назначения, 32программируемых вывода, последовательный интерфейс, интерфейс управления клавиатурой. Функция имеет 3 КТ с буферами FIFO размером 8/16/8 байт.
8x930Ax Микроконтроллер с архитектурой MSC-251. Имеет встроенную USB-функцию, работающую в LS/FS-режимах, 1024 байта ОЗУ, 0/8/16 кбайт ПЗУ, 40 регистров общего назначения, 32 программируемых вывода, последовательный интерфейс. Функция имеет 4(6) КТ с буферами FIFO размером 16/1024(256)/16(32)/16(32)/(32)/(16) байт.
8x930Hx Микроконтроллер с архитектурой MSC-251. Имеет встроенную USB-функцию и хаб с 4 внешними нисходящими портами, работающие в LS/FS-режимах, 1024 байта ОЗУ, 0/8/16 кбайт ПЗУ, 40 регистров общего назначения, 32 программируемых вывода, последовательный интерфейс. Функция имеет 4 КТ с буферами FIFO размером 16/1024/16/16 байт.

Microchip
PIC16C745 Микроконтроллер с архитектурой PIC. Имеет встроенную USB-функцию, работающую в LS-режиме, 256 байт ОЗУ, 14336 байт ПЗУ, 22 программируемых вывода, последовательный интерфейс, 5-канальный 8-битный АЦП.
PIC16C765 Микроконтроллер с архитектурой PIC. Имеет встроенную USB-функцию, работающую в LS-режиме, 256 байт ОЗУ, 14336 байт ПЗУ, 33 программируемых вывода, последовательный интерфейс, 8-канальный 8-битный АЦП.
PIC18F2450 Микроконтроллер с архитектурой PIC. Имеет встроенную USB-функцию, работающую в LS/FS-режиме, 1536 байт ОЗУ, 16384 байт ПЗУ, 19 программируемых выводов, последовательный и SPI-интерфейсы, 5-канальный 10-битный АЦП. Функция имеет 8 КТ.
PIC18F2550 Микроконтроллер с архитектурой PIC. Имеет встроенную USB-функцию, работающую в LS/FS-режиме, 1536 байт ОЗУ, 32768 байт ПЗУ, 19 программируемых выводов, последовательный, CAN- и SPI-интерфейсы, 5-канальный 10-битный АЦП. Функция имеет 8 КТ.
PIC18F4450 Микроконтроллер с архитектурой PIC. Имеет встроенную USB-функцию, работающую в LS/FS-режиме, 1536 байт ОЗУ, 16384 байт ПЗУ, 34 программируемых вывода, последовательный, CAN- и SPI-интерфейсы, 8-канальный 10-битный АЦП. Функция имеет 8 КТ.
PIC18F4550 Микроконтроллер с архитектурой PIC. Имеет встроенную USB-функцию, работающую в LS/FS-режиме, 1536 байт ОЗУ, 32768 байт ПЗУ, 34 программируемых вывода, последовательный, CAN- и SPI-интерфейсы, 8-канальный 10-битный АЦП. Функция имеет 8 КТ.
Texas Instruments TUSB2036 Контроллер LS/FS-хаба 1-3 с индивидуальным управлением питанием нисходящих портов.

На самом деле новый стандарт USB 3.1 и разъем Type-C должны унять безобразие и навести порядок. На все про все - один-единственный кабель: для передачи данных, аудио-, видеосигнала и подачи питания. Симметричный разъем Type-C - настоящее счастье для запутавшихся в проводах пользователей мобильных устройств. А стандарт USB 3.1 позволяет, например, воспроизводить видео с планшета на телевизоре в то время, пока мобильное устройство заряжается.

Уже только переход на новые спецификации готовит производителям дополнительные трудности, из-за чего продавцы и покупатели тотчас же приходят в уныние. Упрекнуть компании в отсутствии заинтересованности нельзя: после выхода на рынок MacBook Pro (2015) многие производители представили продукты с поддержкой нового стандарта USB 3.1 с разъемом Type-C, среди них такие устройства, как материнские платы, мониторы, внешние накопители и смартфоны. Так, разъемом USB Type-C оборудован LG G6, а еще HTC 10 и Samsung Galaxy S8, который подключается к док-станции через универсальный разъем, превращаясь в полноценный персональный компьютер. Но новая форма не всегда означает новые функции: так, Type-C в версии Huawei не поддерживает USB 3.1, а для быстрой зарядки вообще использует собственную технологию.

Старые устройства - помеха для новых стандартов

Многообразие разъемов
Многие USB-устройства, как и прежде, выпускаются с одним из старых разъемов. Type-C должен заменить их все

Технические прорывы всегда занимают очень много времени, если есть большой фонд старой техники. Клавиатуры, мыши, внешние диски, веб-камеры, цифровые фотоаппараты, USB-флешки — миллионы этих устройств по-прежнему требуют поддержки старых версий USB. Проблему можно было бы временно решить, используя универсальные переходники, но ведь все еще выпускаются совершенно новые устройства со старыми USB-портами.

А поскольку обычному USB-кабелю не так-то просто отличить хост от клиентского устройства, ему по сей день требуется целых два разных типа разъемов. Поэтому внешние жесткие диски часто выпускаются с разъемами Mini-A, а принтеры — c типичными четырехугольными разъемами Type-B. Рано или поздно USB Type-C должен заменить не только эти разъемы - при помощи кабеля можно было бы, например, без проблем подключить периферийные устройства к ПК. Более того, Type-C может отправить в небытие DisplayPort, HDMI и даже гнезда TRS.

Не путать: Type-C - это не USB 3.1


«Говорящие» логотипы
Логотипы должны отражать, какие функции обеспечивает разъем USB. К сожалению, их используют не все производители

Поскольку консорциум USB одновременно с разъемом Type-C утвердил две другие спецификации, часто возникает некоторая путаница в понятиях. Во-первых, мы имеем новый разъем Type-C с зеркальным расположением контактов 2×12, благодаря чему порт нечувствителен к ориентации штекера – а это значит, что о проблеме «как воткнуть штекер USB Type-A с первого раза» можно будет совсем скоро забыть.
Во-вторых, вместе с новым разъемом введен новый стандарт USB 3.1, повышающий потолок скорости передачи данных до 10 Гбит/с (брутто).

Далее, электропитание USB Power Delivery (USB-PD) представлено в новой, второй ревизии: она подразумевает ускорение зарядки подключенных устройств путем увеличения мощности (20 В, 5 А вместо прежних 5 В, 0,9 А). Другими словами, несмотря на то, что USB Type-C, USB 3.1 и USB Power Delivery часто отождествляются, они не являются равнозначными терминами или синонимами. Так, существует, например, интерфейс USB 2.0 в формате Type-C или порт USB 3.1 без поддержки быстрой зарядки Power Delivery.

Но это еще не все. Совсем снимать вину за беспорядок с консорциума нельзя, поскольку от использования обычной номенклатуры он ушел: с появлением USB 3.1 прекратил существование USB 3.0 в том смысле, что эта прежняя версия теперь классифицируется как USB 3.1 Gen 1, а нововведенная технология называется USB 3.1 Gen 2. Но множество кабелей и устройств USB продаются под названием USB 3.1 — без указаний, какое именно поколение имеется в виду.

Консорциум USB, правда, разработал систему логотипов для обозначения разъемов USB Type-C, чтобы можно было отличить, например, штекер Type-C с поддержкой USB 3.1 Gen 1 от штекера с поддержкой USB 3.1 Gen 2 или вообще старого USB 2.0, но для начала логотипы нужно внимательно изучить. Нередко приходится заглядывать в руководство, чтобы понять, какая версия используется — если, конечно, подробная документация доступна. Неудивительно, что многие производители продолжают использовать прежнее название USB 3.0.


Предельные величины USB-версий
С USB 3.1 Gen 2 скорость передачи данных повышается вдвое и увеличивается мощность тока для быстрой зарядки

Ко всему этому многообразию следует добавить интерфейс Thunderbolt 3, разрабатываемый в первую очередь Intel и Apple. Thunderbolt с третьей версии тоже использует разъем Type-C, но не совсем совместим с USB 3.1. С использованием активных кабелей Thunderbolt 3 пропускная способность достигает 40 Гбит/с (брутто) — в четыре раза больше, чем у USB 3.1. Это не только обеспечивает очень высокую скорость передачи данных, но и позволит передавать по DisplayPort несколько видеопотоков с контентом 4K и даже использовать внешние видеокарты. Сложные технологии требуют использования активной электроники в кабелях. USB-устройства можно подключать к порту Thunderbolt 3, но ни в коем случае не наоборот.

Трудный выбор кабелей

Неразбериха не останавливается одними стандартами и версиями. Если раньше можно было ограничить выбор одним USB-кабелем с нужными типами разъемов, с USB 3.1 и Type-C это будет не так-то просто. Здесь, как и в случае со стандартами и версиями, в настоящее время образовался огромный недостаток информации: далеко не все кабели Type-C умеют передавать данные, видео и подавать питание. Во многих случаях для пользователей непонятно, поддерживает ли кабель Type-C быструю зарядку Power Delivery или альтернативный режим для передачи видео, потому что логотипов и маркировки, как правило, попросту нет.


Премиумные материнские платы
В настоящее время USB 3.1 Gen 2 поддерживают только отдельные материнские платы премиум сегмента. Среди них - Asus Rampage V 10, оснащенная двумя портами Type-A и двумя Type-C, стоит она около 38 500 рублей

Зачастую невозможно определить, поддерживает ли кабель USB 3.1 или всего лишь USB 2.0. На сайте Amazon очень часто встречаются отзывы от расстроенных клиентов, которые после покупки обнаружили, что приобретенный кабель не поддерживает технологию быстрой зарядки их смартфонов. Из тяжелого положения совсем не помогает выйти даже обозначение некоторыми производителями, например, Aukey, кабеля USB 3.1 Gen 1 с концами Type-C и Type-A как «кабель с Type-C на USB 3.0» — это в корне неверно.

Если вы решили обзавестись устройством с разъемом Type-C, непременно убедитесь в том, что в комплекте поставки есть кабель — только в таком случае все требования наверняка будут удовлетворены. Поставщик оборудования для компьютерной техники Hama, например, предлагает несколько кабелей Type-C с подробными характеристиками, но цены начинаются от 1000 рублей. Еще дороже обойдется покупка кабеля Thunderbolt 3 — нужно будет выложить около 2000 рублей. Зато тут предусмотрены все функции. Если эта цена слишком высока, то волей-неволей придется порыться в описаниях продуктов и отзывах клиентов о них в поисках нужного кабеля.

USB-C: симметричный штекер

Передача данных, питание и диалог между устройствами - каждый из 24 пинов штекера Type-C выполняет отдельную функцию. Легко заметить, что их расположение симметрично.

Дисплеи, ноутбуки и адаптеры

Для передачи видео в одном из альтернативных режимов (DisplayPort или HDMI), то есть, например, с ноутбука на монитор, тоже следует обратить внимание на технические требования. В настоящее время на рынке есть несколько мониторов с разъемом USB Type-C от LG, Eizo, Acer и HP (например, Envy 27, около 40 000 рублей). Для вывода видео практически повсеместно используется стандарт DisplayPort, который и вправду работает вполне надежно. Но если говорить о быстрой зарядке, которая предъявляет особые требования блоку питания монитора, то тут у покупателей во многих случаях возникают вопросы.


Видео в альтернативном режиме
Передачу видео на монитор разъем USB-C, например, как у LG 27UD88 (около 38 000 рублей), как правило, обеспечивает надежно, но быстрая зарядка Power Delivery ему дается не всегда

Впрочем, подача питания с монитора на ноутбук не всегда обязательна. Портативный 15-дюймовый монитор Asus MB169C+ (около 15 000 рублей) получает питающее напряжение от ноутбука через полноценно используемый разъем Type-C.
Так или иначе, в настоящее время чаще случается так, что ноутбук с разъемом USB Type-C подключается к монитору через порт HDMI или DisplayPort. В таких случаях требуется переходник, преобразующий видеосигнал и передающий его на монитор с использованием нужного стандарта. Такие аксессуары можно купить примерно от 1000 рублей. По сравнению с другими кабелями выбирать переходники довольно просто, потому что их задача заключается только в преобразовании видеосигнала без учета других особенностей USB 3.1.

Для тех, кто интересуется ноутбуком или планшетом с разъемом Type-C, выбор в настоящее время ограничен, но зато замечателен. Кроме MacBook (12 дюймов) есть гибриды Acer Aspire Switch 10 V (около 25 000 рублей) и Asus T100HA (около 18 000 рублей). А юный хромбук Google Pixel оснащен целыми двумя портами Type-C (правда, только стандарта USB 3.1 Gen 1), но в России он пока не поступал в официальную продажу.


Старая документация
Несмотря на то, что Acer Aspire Switch 10 V снабжен только одним портом Type-C, в руководстве указаны старые типы USB-разъемов

Наверное, вряд ли какой-нибудь пользователь осмелится разом перевести все свои периферийные устройства на Type-C, поэтому большинству владельцев ноутбуков для начала потребуется адаптер USB 3.1 для передачи данных и видеосигнала по кабелю USB Type-A, HDMI или DisplayPort. Цены на рекомендуемые гибкие модели начинаются от 2500 рублей, как, например, на Icy Box IB-DK4031. Club 3D SenseVision стоит дороже — около 6500 рублей — зато он включает HDMI, DVI, USB 3.0 Type-A, 4 разъема USB 2.0, быструю зарядку USB, а также гнезда для подключения микрофона и наушников.

Менее богат в настоящий момент выбор для десктопов: традиционно производители материнских плат внедряют новые стандарты в премиум-модели. Единственная материнская плата с четырьмя портами USB 3.1 Gen 2 (по два Type-A и Type-C) — это Asus Rampage V 10, которая стоит около 38 500 рублей. По крайней мере, указание на быструю передачу 10 Гбит/с находится в том числе на панели интерфейсных разъемов. Одним из вариантов USB 3.1 из нижней ценовой категории десктопов является MSI X99A SLI (LGA 2011-3) с одним портом Type-A и одним Type-C примерно за 15 000 рублей.

Универсальный адаптер

Переход на компьютеры с разъемом Type-C потребует для периферии наличия переходника с различными типами портов.

> Club 3D SenseVision (около 6500 рублей)
Адаптер относительно дорогой, но оснащен большим количеством портов, среди которых - HDMI, DVI, гнезда для микрофона и наушников, а также четыре порта USB 2.0 и разъем для быстрой зарядки (USB 3.1 Gen 1)

> Icy Box IB-DK4031 (около 2500 рублей)
Более простой вариант адаптера с разъемом Type-A (USB 3.1 Gen 1), HDMI,
а также разъемом Type-C с Power Delivery для быстрой зарядки внешних устройств.

Преимущества внешней памяти благодаря USB 3.1


Быстрая память
USB 3.1 Gen 2 обеспечивает многим внешним твердотельным накопителям, например, Freecom mSSD MAXX, значительный рывок в скорости

От высоких скоростей передачи данных по USB 3.1 Gen 2 выигрывают, конечно же, сетевые хранилища с конфигурацией RAID и внешние накопители, в первую очередь флеш-память — твердотельные накопители и USB-флешки. Но для последних в настоящее время доступность USB 3.1 Gen 2 сводится к нулю. Предлагаемые флешки SanDisk, Kingston и Corsair, позиционируемые как USB 3.1, передают данные со скоростью не более 5 Гбит/с, то есть относятся к первому поколению. Тем не менее, для большей части флешек сейчас этого должно хватить.

Что же касается внешних твердотельных накопителей, то тут производители Freecom (mSSD MAXX, около 8000 рублей) и Adata (SE730, около 9500 рублей) предлагают диски с USB 3.1 уже второго поколения. Первые практические тестирования показывают, что высокоскоростной интерфейс действительно обеспечивает ощутимо более высокие скорости передачи данных. Terramaster предлагает корпус для сетевого хранилища D2-310 с двумя отсеками (около 10 000 рублей) с поддержкой USB 3.1 Gen 2, на котором высокоскоростные диски SATA в RAID-массиве тоже должны произвести хорошее впечатление.


Музыка по USB-C
Счет гнезду для наушников на смартфоне открыт: в скором времени в стандартной комплектации появится переходник Type-C на TRS

Следует отдельно отметить, что производители памяти лучше всех остальных справляются с задачей указывать версии и стандарты и реже всего бросают своих клиентов на полпути. Остальные же производители должны в срочном порядке дополнить документацию и должным образом реализовывать стандарты.

Переход с одного поколения технологий на другое всегда был длительным и часто запутанным процессом, но со времен VHS и Betamax такой сумятицы, как сейчас, еще не было. Когда-нибудь конфигурация USB 3.1 / Type-C и вправду упростит всем жизнь - особенно пользователям, ну а пока предстоит преодолеть немало трудностей.

ФОТО: CHIP Studios; Freecom; Stouch; Club 3D; Raidsonic; Acer; LG; Asus; Sabrina Raschpichler

Если вы встречаете в технических устройствах обозначение: USB Type-A, USB Type-B или USB Type-C, то это означает, что в устройстве под usb используются такие типы разьемов.
Это не обозначение стандарта USB, это обозначение типа разьема.

Стандарты же USB или их версии обозначаются так: USB 1.0 , USB 1.1 , USB 2.0 , USB 3.0 и USB 3.1 .
Причем USB 3.1 имеет две версии: USB 3.1 Gen 1 и USB 3.1 Gen 2 .

Наиболее известный тип разьемов USB, это USB Type-A, он расположен на флешках, USB-модемах, на концах проводов мышек и клавиатур.

Он используется для стандартов USB 1.0 , USB 1.1 , USB 2.0 и USB 3.0 .
Для USB 1.0 , USB 1.1 , USB 2.0 разьем имеет черный цвет, а для USB 3.0 - синий.
Благодаря разьему USB Type-A устройства со стандартами до USB 3.0 совместимы.

Разьем USB Type-C отличается от предыдущих и не совместим с ними.

Если возникла необходимость совместить, то нужно использовать соответствующие переходники.

Важным преимуществом разьема USB Type-C является то, что он является симметричным.
Теперь больше не придется беспокоиться о том, какой стороной вставлять кабель в устройство, т.е. штекер типа С можно вставлять любой стороной в гнездо.

Теперь разберемся в разнице стандартов USB.
Теоретическая скорость передачи данных:

USB 1.0 до 1,5 Мбит/с
- USB 1.1 до 12 Мбит/с
- USB 2.0 до 480 Мбит/с
- USB 3.0 и USB 3.1 Gen 1 до 5 Гбит/с
- USB 3.1 Gen 2 до 10 Гбит/с

Напряжение питания, максимальный ток и мощность потребляемые периферийным устройством:

USB 1.0, USB 1.1 - до 150 мА 5 В (0,75 Вт)
USB 2.0 - 5В до 500 мА (2,5 Вт)
USB 3.0 - 5В до 900 мА (4,5 Вт)
USB 3.1 Current @ 1,5 A - 5В до 1,5 А (7,5 Вт)
USB 3.1 Current @ 3 A - 5В до 3А (15 Вт)
USB 3.1 (с поддержкой Power Delivery 2.0) и в зависимости от Profile:
Profile1 - 5В 2А (10 Вт)
Profile2 - 5В 2А, 12В 1,5А (18 Вт)
Profile3 - 5В 2А, 12В 3А (36 Вт)
Profile4 - 5В 2А, 12В, 20В 3А (60 Вт)
Profile5 - 5В 2А, 12В, 20В 5А (100 Вт)

Система силовых профилей введена для более продвинутых случаев, для стандартных же устройств используется Profile1.
Например, продвинутым случаем можно считать активный кабель usb на 100 метров, имеющий на обоих своих концах преобразователь сигналов USB интерфейса в оптический и наоборот (максимальная длина стандартного USB кабеля не может превышать 5 метров).
Такой кабель передает только данные, а питание необходимо для преобразователей.

Поэтому необходимо знать силовые профили, как подключаемых периферийных устройств, так и основного устройства, к которому совершается подключение.
Порт на устройстве, соответствующий профилю более высокого уровня, поддерживает все состояния предыдущих по нисходящей.

Так например, к устройству с Profile5 можно подключать устройство с любым профилем.
Обращаем ваше внимание на то, что кабель usb тоже должен соответствовать силовому профилю, если вы подключаете периферийное устройство повышенной мощности.

И последнее замечание.
Наличие на устройстве разьема USB Type-C, еще не значит, что этот порт в устройстве работает по стандарту USB 3.1 .

Всё больше подробностей появляется в Сети о процессорах Comet Lake-S компании Intel.

Разьем Intel LGA1200 для процессоров ПК

Выход процессоров Intel Core Comet Lake 10-го поколения для настольных ПК и материнских плат на базе чипсетов 400-й серии (Z490, W480, Q470 и H410) ожидается во второй половине 2020 года.

NVIDIA GeForce Experience обновилось до версии 3.20.2

23 декабря 2019 г. компания NVIDIA обновила приложение NVIDIA GeForce Experience (GFE) для Windows до версии 3.20.2.
Обновление исправляет опасную уязвимость CVE-2019-5702.

USB это последовательный интерфейс передачи данных для периферийных устройств в вычислительной технике

Стандарт USB 1.0, получивший широкое распространение, был представлен в ноябре 1996 года. Версия v1.1 практически почти не используется по причине слишком низкой скорости передачи данных (12 Мбит/сек), поэтому применяется только для совместимости.

USB 2.0

Стандарт USB 2.0, получивший широкое распространение, был представлен в ноябре 1996 года.

Как и в случае спецификаций USB 1.0 и USB 1.1, в спецификации USB 2.0 для подключения периферийных устройств используется кабель, состоящий из двух пар проводов: одна витая пара проводов для приема и передачи данных, а другая - для питания периферийного устройства.

Напряжение питания по шине USB равно 5 В при силе тока до 500 мА. Этого, конечно, недостаточно для периферийных устройств со высоким энергопотреблением, например таких как принтеры. Поэтому они комплектуются собственными блоками питания, которые подключаются непосредственно к электрической розетке. Кабели USB ориентированы, то есть имеют физически разные наконечники «к устройству» (Тип B) и «к хосту» (Тип A). Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту».

Компьютеры и ноутбуки, выпущенные после 2003 года, как правило, оснащены портами USB 2.0.

Устройств USB 2.0 поддерживают три режима работы:

  • Low-speed , 10-1500 Кбит/c (клавиатуры, мыши, джойстики, геймпады)
  • Full-speed , 0,5-12 Мбит/с (аудио-, видеоустройства)
  • High-speed , 25-480 Мбит/с (видеоустройства, устройства хранения информации)

Интерфейс USB 3.0 – стандарт SuperSpeed USB

Спецификация USB 3.0 появилась в 2008 году.

В спецификации USB 3.0 разъёмы и кабели совместимы с USB 2.0, причём для однозначной идентификации разъёмы USB 3.0 изготавливают из пластика синего или (у некоторых производителей) красного цвета.

Спецификация USB 3.0 повышает максимальную скорость передачи информации до 5 Гбит/с - что выше скорости передачи данных устройств USB 2.0. (максимально 480 Мбит/с.)

31 июля 2013 года USB 3.0 Promoter Group объявила о принятии спецификации следующего интерфейса, USB 3.1, скорость передачи которого может достигать 10 Гбит/с. Разъём USB 3.1 Type-C является симметричным.

Типы возможных разъемов и кабелей

Количество возможных разъемов USB 3.0 стало больше. Самый популярный разъём, которым все пользовались - USB Type-A классического размера: он расположен на флешках, USB-модемах, на концах проводов мышей и клавиатур. Чуть реже встречаются полноразмерные USB Type-B: обычно таким кабелем подключаются принтеры и сканеры. Мини-версия USB Type-B до сих пор часто используется в кардридерах, цифровых камерах, USB-хабах. Микро-версия Type-B стала самым популярным разъёмом в мире: все актуальные мобильники, смартфоны и планшеты (кроме продукции одной фруктовой компании) выпускаются именно с разъёмом USB Type-B Micro.

Введение

Шина USB (Universal Serial Bus - универсальная последовательная шина) появилась по компьютерным меркам довольно давно - версия первого утвержденного варианта стандарта появилась 15 января 1996 года. Разработка стандарта была инициировна весьма авторитетными фирмами - Intel, DEC, IBM, NEC, Northen Telecom и Compaq.

Основная цель стандарта, поставленная перед его разработчиками - создать реальную возможность пользователям работать в режиме Plug&Play с периферийными устройствами. Это означает, что должно быть предусмотрено подключение устройства к работающему компьютеру, автоматическое распознавание его немедленно после подключения и последующей установки соответствующих драйверов. Кроме этого, желательно питание маломощных устройств подавать с самой шины. Скорость шины должна быть достаточной для подавляющего большинства периферийных устройств. Попутно решается историческая проблема нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера - контроллер USB занимает только одно прерывание независимо от количества подключенных к шине устройств.

Технические характеристики

Возможности USB следуют из ее технических характеристик:

  • Высокая скорость обмена (full-speed signaling bit rate) - 12 Mb/s
  • Максимальная длина кабеля для высокой скорости обмена - 5 m
  • Низкая скорость обмена (low-speed signaling bit rate) - 1.5 Mb/s
  • Максимальная длина кабеля для низкой скорости обмена - 3 m
  • Максимальное количество подключенных устройств (включая размножители) - 127
  • Возможно подключение устройств с различными скоростями обмена
  • Отсутствие необходимости в установке пользователем дополнительных элементов, таких как терминаторы для SCSI
  • Напряжение питания для периферийных устройств - 5 V
  • Максимальный ток потребления на одно устройство - 500 mA

Поэтому целесообразно подключать к USB практически любые периферийные устройства, кроме цифровых видеокамер и высокоскоростных жестких дисков. Особенно удобен этот интерфейс для подключения часто подключаемых/отключаемых приборов, таких как цифровые фотокамеры. Конструкция разъемов для USB рассчитана на многократное сочленение/расчленение.

Возможность использования только двух скоростей обмена данными ограничивает применяемость шины, но существенно уменьшает количество линий интерфейса и упрощает аппаратную реализацию.

Питание непосредственно от USB возможно только для устройств с малым потреблением, таких как клавиатуры, мыши, джойстики и т.п.

Кабели и разъемы

Сигналы USB передаются по 4-х проводному кабелю

Здесь GND - цепь "корпуса" для питания периферийных устройств, VBus - +5V также для цепей питания. Шина D+ предназначена для передачи данных по шине, а шина D- для приема данных.

Кабель для поддержки полной скорости шины (full-speed) выполняется как витая пара, защищается экраном и может также использоваться для работы в режиме минимальной скорости (low-speed). Кабель для работы только на минимальной скорости (например, для подключения мыши) может быть любым и неэкранированным.