Клеточный химический состав костной ткани. Костная ткань. Функции костной ткани. Строение костной ткани

Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33-40%. Количество воды приблизительно то же, что и в компактной кости.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген типа I. Данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. В нем несколько больше оксипролина, а также свободных аминогрупп лизиновых и оксилизиновых остатков. Это обусловливает наличие большего количества поперечных связей в коллагеновых волокнах и их большую прочность. По сравнению с коллагеном других тканей костный коллаген характеризуется повышенным содержанием фосфата, который в основном связан с остатками серина.

Белки неколлагеновой природы представлены гликопротеинами, белковыми компонентами протеогликанов. Принимают участие в росте и развитии кости, процессе минерализации, водно-солевом обмене. Альбумины участвуют в транспорте гормонов и других веществ из крови.

Преобладающим белком неколлагеновой природы является остеокальцин . Он присутствует только в костях и зубах. Это небольшой (49 аминокислотных остатков) белок, называемаый также костным глутаминовым белком или gla-белком. В молекуле остеокальцина обнаружены три остатка
γ-карбоксиглутаминовой кислоты. За счет этих остатков он способен связывать кальций. Для синтеза остеокальцина необходим витамин К (рис. 34).



Рис. 34. Посттрансляционная модификация остеокальцина

В состав органического матрикса костной ткани входят гликозаминогликаны, основным представителем которых является хондроитин-4-сульфат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах. Окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Гликозаминогликаны участвуют в связывании коллагена с кальцием, регуляции водного и солевого обмена.

Цитрат необходим для минерализации костной ткани. Он образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация. Также принимет участие в регуляции уровня кальция в крови. Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

Костный матрикс содержит небольшое количество липидов. Липиды играют существенную роль в образовании ядер кристаллизации при минерализации кости.

Остеобласты богаты РНК. Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию.

Неорганический состав костной ткани.

В раннем возрасте в костной ткани преобладает аморфныйм фосфат кальция Са 3 (РО 4) 2 . В зрелой кости преобладающим становится кристаллический гидроксиапатит Са 10 (РО 4) 6 (ОН) 2 (рис. 35). Его кристаллы имеют форму пластин или палочек. Обычно аморфный фосфат кальция рассматривают как лабильный резерв ионов Са 2+ и фосфата.

В состав минеральной фазы кости входят ионы натрия, магния, калия, хлора и др. В кристаллической решетке гидроксиапатита ионы Са 2+ могут замещаться другими двухвалентными катионами, тогда как анионы, отличные от фосфата и гидроксила, либо адсорбируются на поверхности кристаллов, либо растворяются в гидратной оболочке кристаллической решетки.

Рис. 35. Строение кристалла гидроксиапатита

Метаболизм костной ткани характеризуется двумя противоположными процессами: образованием новой костной ткани остеобластами и резорбцией (деградацией) старой остеокластами. В норме количество новообразованной ткани эквивалентно разрушенной. Костная ткань скелета человека практически полностью перестраивается в течение 10 лет.

Образование костной ткани

На1 этапе остеобласты синтезируют сначала протеогликаны и гликозаминогликаны, образующие матрикс, а затем продуцируют фибриллы костного коллагена, которые распределяются в матриксе. Костный коллаген является матрицей для процесса минерализации. Необходимым условием процесса минерализации является пересыщение среды ионами кальция и фосфора. Образование кристаллов минерального остова кости запускают
Са-связывающие белки на матрице коллагена. Остеокальцин прочно связан с гидроксиапатитом и участвует в регуляции роста кристаллов за счет связывания Са 2+ в костях. Электронномикроскопические исследования показали, что формирование минеральной кристаллической решетки начинается в зонах, находящихся в регулярных промежутках между коллагеновыми фибриллами. Образовавшиеся кристаллы в зоне коллагена затем в свою очередь становятся ядрами минерализации, где в пространстве между коллагеновыми волокнами откладывается гидроксиапатит.

На 2 этапе в зоне минерализации при участии лизосомных протеиназ происходит деградация протеогликанов; усиливаются окислительные процессы, распадается гликоген, синтезируется необходимое количество АТФ. Кроме того, в остеобластах увеличивается количество цитрата, необходимого для синтеза аморфного фосфата кальция.

По мере минерализации костной ткани кристаллы гидроксиапатита вытесняют не только протеогликаны, но и воду. Плотная, полностью минерализованная кость практически обезвожена.

Фермент щелочная фосфатаза принимает участие в минерализации. Одним из механизмов ее действия является локальное увеличение концентрации ионов фосфора до точки насыщения, за которым следуют процессы фиксации кальций-фосфорных солей на органической матрице кости. При восстановлении костной ткани после переломов содержание щелочной фосфатазы в костной мозоли резко увеличивается. При нарушении костеобразования наблюдается уменьшение содержания и активности щелочной фосфатазы в костях, плазме и в других тканях.

Ингибитором кальцификации является неорганический пирофосфат. Ряд исследователей считают, что процессу минерализации коллагена в коже, сухожилиях, сосудистых стенках препятствует постоянное наличие в этих тканях протеогликанов.

Процессы моделирования и ремоделирования обеспечивают постоянное обновление костей, а также модификацию их формы и структуры. Моделирование (образование новой кости) имеет место в основном в детском возрасте. Ремоделирование является доминирующим процессом в скелете взрослых; в этом случае происходит лишь замена отдельного участка старой кости. Таким образом, в физиологических и патологическтх условиях происходит не только образование, но и резорбция костной ткани.

Катаболизм костной ткани

Практически одновременно имеет место «рассасывание» как минеральных, так и органических структур костной ткани. При остеолизе усиливается продукция органических кислот, что приводит к сдвигу рН в кислую сторону. Это способствует растворению минеральных солей и их удалению.

Резорбция органического матрикса происходит под действием лизосомных кислых гидролаз, спектр которых в костной ткани довольно широк. Они участвуют во внутриклеточном переваривании фрагментов резорбируемых структур.

При всех заболеваниях скелета происходят нарушения процессов ремоделирования кости, что сопровождается возникновением отклонений в уровне биохимических маркеров.

Имеются общие маркеры формирования новой костной ткани , такие как костно-специфическая щелочная фосфатаза, остеокальцин плазмы, проколлаген I, пептиды плазмы. К биохимическим маркерам резорбции кости относятся кальций в моче и гидроксипролин, пиридинолин мочи и дезоксипиридинолин, являющиеся производными поперечных волокон коллагена, специфичных для хрящей и костей.

Факторами , влияющими на метаболизм костной ткани, являются гормоны, ферменты и витамины.

Минеральные компоненты костной ткани находятся практически в состоянии химического равновесия с ионами кальция и фосфата сыворотки крови. В регуляции поступления, депонирования и выделения кальция и фосфата важную роль играют паратгормон и кальцитонин.

Действие паратгормона приводит к увеличению числа остеокластов и их метаболической активности. Остеокласты способствуют ускоренному растворению содержащихся в костях минеральных соединений. Таким образом, происходит активация клеточных систем, участвующие в резорбции кости.

Паратгормон увеличивает также реабсорбцию ионов Са 2+ в почечных канальцах. Суммарный эффект проявляется в повышении уровня кальция в сыворотке крови.

Действие кальцитонина состоит в снижении концентрации ионов Са 2+ за счет отложения его в костной ткани. Он активирует ферментную систему остеобластов, повышает минерализацию кости и уменьшает число остеокластов в зоне действия, т. е. угнетает процесс костной резорбции. Все это увеличивает скорость формирования кости.

Витамин D участвует в биосинтезе Са 2+ -связывающих белков, стимулирует всасывание калиция в кишечнике, повышает реабсорбцию кальция, фосфора, натрия, цитрата, аминокислот в почках. При недостатке витамина D эти процессы нарушаются. Прием в течение длительного времени избыточных количеств витамина D приводит к деминерализации костей и увеличению концентрации кальция в крови.

Кортикостероиды увеличивают синтез и секрецию паратгормона, усиливают деминерализацию кости; половые гормоны ускоряют созревание и сокращают период роста кости; тироксин усиливает рост и дифференцировку ткани.

Действие витамина С на метаболизм костной ткани обусловлено, прежде всего, влиянием на процессе биосинтеза коллагена. Аскорбиновая кислота является кофактором пролил- и лизилгидроксилаз и необходима для осуществления реакции гидроксилирования пролина и лизина. Недостаток витамина С приводит также к изменениям в синтезе гликозаминогликанов: содержание гиалуроновой кислоты в костной ткани увеличивается в несколько раз, тогда как биосинтез хондроитинсульфатов замедляется.

При недостатке витамина А происходит изменение формы костей, нарушение минерализации, задержка роста. Считают, что данный факт обусловлен нарушением синтеза хондроитинсульфата. Высокие дозы витамина А приводят к избыточной резорбции кости.

При недостатке витаминов группы В рост кости замедляется, что связано с нарушением белкового и энергетического обмена.

Особенности зубной ткани

Основную часть зуба составляет дентин . Выступающая из десны часть зуба, коронка, покрыта эмалью , а корень зуба покрыт зубным цементом . Цемент, дентин и эмаль построены подобно костной ткани. Белковый матрикс этих тканей состоит главным образом из коллагенов и протеогликанов. Содержание органических компонентов в цементе – около 13%, в дентине – 20%, в эмали – всего 1-2%. Высокое содержание минеральных веществ (эмаль – 95%, дентин – 70%, цемент – 50%) определяет высокую твердость зубной ткани. Наиболее важным минеральным компонентом является гидроксиапатит [Са 3 РО 4) 2 ] 3 Са(ОН) 2 . Содержатся также карбонатный апатит, хлорапатит и стронцевый апатит.

Эмаль, покрывающая зуб, полупроницаема. Она участвует в обмене ионами и молекулами со слюной. На проницаемость эмали влияют рН слюны, а также ряд химических факторов.

В кислой среде ткань зуба подвергается атаке и утрачивает твердость. Такое распространенное заболевание, как кариес , вызывается микроорганизмами, живущими на поверхности зубов и выделяющими в качестве продукта анаэробного гликолиза органические кислоты, вымывающие из эмали ионы Са 2+ .

Контрольные вопросы

1. Назовите основные органические компоненты костной ткани.

2. Какие неорганические соединения входят в состав костной ткани?

3. В чем различие биохимических процессов, протекающих в остеокластах и остеобластах?

4. Опишите процесс формирования кости.

5. Какие факторы влияют на формирование костной ткани и ее метаболизм?

6. Какие вещества могут быть биохимическими маркерами процессов, протекающих в костной ткани?

7. Каковы особенности биохимического состава зубной ткани?


Литература

1. Березов, Т.Т. Биологическая химия. / Т.Т. Березов, Б.Ф. Коровкин. - М.: ОАО «Издательство «Медицина»», 2007. - 704 с.

2. Биохимия. / Под ред. Е.С. Северина. - М.: ГЭОТАР-Медиа, 2014. -
768 с.

3. Биологическая химия с упражнениями и задачами. / Под ред. Е.С. Северина. - М.: ГЭОТАР-Медиа, 2013. - 624 с.

4. Зубаиров, Д.М. Руководство к лабораторным занятиям по биологической химии. / Д.М. Зубаиров, В.Н. Тимербаев, В.С. Давыдов. - М.: ГЭОТАР-Медиа, 2005. - 392 с.

5. Шведова, В.Н. Биохимия. /В.Н. Шведова. – М.: Юрайт, 2014. – 640 с.

6. Николаев, А.Я. Биологическая химия. / А.Я. Николаев. - М.: Медицинское информационное агентство, 2004. - 566 с.

7. Кушманова, О.Б. Руководство к лабораторным занятиям по биологической химии. / О.Б. Кушманова, Г.И. Ивченко. - М. - 1983.

8. Ленинджер, А. Основы биохимии / А. Ленинджер. - М., «Мир». - 1985.

9. Марри, Р. Биохимия человека. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - Т. 1. - М.: Мир, 1993. - 384 с.

10. Марри, Р. Биохимия человека. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - Т. 2. - М.: Мир, 1993. - 415 с.

Костная ткань отличается рядом весьма своеобразных качеств, резко выделяющих ее среди всех других тканей и систем человеческого организма и ставящих ее на обособленное место. Основной и главной особенностью костной ткани является ее богатство минеральными солями.

Если принять вес тела взрослого человека в среднем за 70 кг, то костный скелет весит 7 кг, а вместе с костным мозгом - 10 кг (мышцы - „мясо” - весят 30 кг). Сами кости по весу состоят из 25% воды, 30% органического вещества и 45% минералов. Содержание воды и, стало быть, относительное содержание и других ингредиентов колеблется. Количество воды сравнительно очень велико в эмбриональной жизни, оно убывает в детском возрасте и постепенно уменьшается по мере роста и развития ребенка, отрока и зрелого человека, достигая в старости наименьшего отношения к общему весу. Кости с возрастом можно сказать буквально высушиваются.

Органический состав костей формируется главным образом из белков - протеинов, преимущественно оссеина, но в сложную органическую часть костной ткани входят и некоторые альбумины, мукоидные и другие вещества весьма непростого химического строения.

Каков же больше всего нас интересующий минеральный состав костного вещества? 85% солей составляет фосфорнокислая известь, 10,5% углекислый кальций, 1,5% фосфорнокислая магнезия, а остальные 3% - это натрий, калий, примеси хлора и некоторых редких для человеческого организма элементов. Фосфорнокислый кальций, стало быть составляющий 19/20 содержимого всего солевого костного вещества, образует 58% общего веса костей.

Фосфорнокислые соли имеют кристаллическое строение, и кристаллы располагаются в кости правильно, закономерно. Весьма тщательное изучение минерального остова костного вещества, произведенное в 30-х годах при помощи наиболее совершенных методов, в первую очередь путем рентгенологического структурного анализа, показало, что неорганическое костное вещество человека имеет строение фосфатита-апатита, а именно гидроксил-апатита. При этом интересно, что апатит в костях (и в зубах) человека близок или даже подобен естественному минеральному апатиту в мертвой природе. На это тождество апатита человеческого костного и горнорудного происхождения указывает также их сравнительное исследование в поляризационном свете. Человеческий костный апатит отличается еще содержанием незначительного количества галоида хлора или фтора. Некоторые специалисты по структурному анализу стоят на той точке зрения, что в человеческих костях апатит еще связан с другими химическими соединениями, т.е. что кристаллы неорганической костной субстанции - это смесь двух неорганических химических веществ, одна из которых близка к апатиту. Считают, что наиболее правильно физико-химическая структура костного апатита расшифрована венгерским ученым Сент Нарай-Сабо (St. Naray-Szabo). Наиболее вероятна такая формула строения неорганического состава кости: ЗСА 3 (РO 4) 2 . СаХ 2 , где X - это или Cl, F, ОН, V2O, 1 / 2 SO 4 , 1 / 2 СO 3 и т. д. Есть также указания, что апатит состоит из двух молекул - CaF. Са 4 (РO 4) 3 или СаС1. Са 4 (РO 4) 3 .

Чрезвычайно интересны указания Райнольдса (Reynolds) и др. на то, что при некоторых патологических процессах кости теряют свое нормальное химическое апатитовое строение. Это имеет место, например, при гиперпаратиреоидной остеодистрофии (болезни Реклингхаузена), в то время как при болезни Педжета апатитовая структура кристаллов полностью сохраняется.

Костная ткань - это пусть и весьма древняя по филогенезу, но вместе с тем высоко развитая и исключительно тонко и детально дифференцированная, крайне сложная по всем своим жизненным проявлениям мезенхимальная соединительная ткань.

Изменения в костях при различных патологических процессах бесконечно разнообразны; при каждом отдельном заболевании, в каждой отдельной кости, в каждом отдельном случае патологоанатомическая и патофизиологическая, а следовательно, и рентгенологическая картина имеет свои особенности. Все это громадное разнообразие болезненных явлений сводится, однако, в конечном итоге лишь к некоторым не столь уж многочисленным элементарным качественным и количественным процессам.

Болезнь - это, как известно, не только извращенная арифметическая сумма единичных нормальных явлений, при патологических условиях в целом организме и в отдельных органах и тканях возникают специфические качественные изменения, для которых не существует нормальных прообразов. Глубокий качественный метаморфоз претерпевает и болезненно измененная кость. Надкостница, например, образуя на месте диафизарного перелома мозоль, начинает выполнять новую, в норме ей не свойственную функцию, она вырабатывает хрящевую ткань. Опухоль кости связана с развитием, например, эпителиальных, миксоматозных, гигантоклеточных и других образований, столь же чуждых нормальной кости гистологически, сколь химически для нее необычны отложения холестерина при ксантоматозе или керазина при болезни Гоше. Костный аппарат при рахите или педжетовской перестройке приобретает совершенно новые физические, химические, биологические и прочие качества, для которых в нормальной кости мы не в состоянии подыскать количественные критерии для сравнения.

Но эти качественные свойства, специфические для патологических процессов в костной субстанции, к сожалению, сами по себе не могут быть непосредственно определены рентгенологически, они проявляются на рентгенограммах лишь в виде косвенных, вторичных симптомов. Не в их распознавании и изучении сила рентгенологии. Лишь когда качественно измененная ткань в своей количественной определенности дошла до степени возможного обнаружения, вступает в свои права рентгенологический метод исследования. При помощи безупречных экспериментальных исследований Полина Мек (Mack) доказала, что из различных составных частей костной ткани поглощение рентгеновых лучей происходит на 95% за счет минерального состава (80% лучей задерживается кальцием и 15% - фосфором), и только в пределах до 5% теневое изображение костей обусловлено органическим „мягким” ингредиентом костной ткани. Поэтому в силу самой природы рентгенологического исследования в рентгенодиагностике заболеваний костей и суставов на первый план выступает оценка количественных изменений костной ткани. Нельзя весами измерять расстояние. Рентгенолог при помощи своего исключительно ценного, ’Но все же одностороннего метода в настоящее время еще вынужден ограничиться анализом преимущественно двух основных количественных процессов жизнедеятельности кости, а именно созидания кости и ее разрушения.

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название "костно-мышечная ткань", основная функция которой - опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Строение костной ткани

Это отдельный вид соединительной ткани, из нее образуются все кости в человеческом теле. В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон (90-95% от общей массы) и минеральных компонентов, в основном солей кальция (5-10%). Благодаря такому составу костная ткань человека имеет гармоничное сочетание твердости и эластичности. Различают три группы клеток: остеокласты (слева), остеобласты (посередине), остеоциты (справа на фото).

Более подробно остановимся на них далее. Коллаген, содержащийся в матриксе, имеет отличия от своих аналогов, находящихся в других тканях, главным образом за счет того, что содержит больше специфических полипептидов. Волокна расположены, как правило, параллельно уровню наиболее вероятных нагрузок на кость. Именно благодаря нему сохраняется эластичность и упругость.

Если кость подвергнуть действию соляной кислоты, то минеральные вещества будут растворены, а вот органические (оссеин) останутся. Они сохранят форму, но станут чрезмерно гибкими и сильно подверженными деформированию. Такое состояние характерно для маленьких детей. У них высоко содержание оссеина, поэтому кости более эластичны, чем у взрослых. И обратный случай, когда теряются органические вещества, но остаются минеральные. Это происходит, если, к примеру, кость обжечь: она сохранит свою форму, но приобретет вместе с тем сильную хрупкость и может разрушиться даже от незначительного прикосновения. Такие изменения состав костной ткани претерпевает в старости. Доля минеральных солей доходит до 80% от всей массы. Поэтому пожилые люди более подвержены различного рода переломам и травмам.

Если установить плотность костной ткани (объем), то это позволит оценить прочность скелета и его отдельных частей. Такие исследования проводятся с использованием компьютерной томографии. Своевременная диагностика позволяет начать лечение или поддерживающую терапию вовремя.

Остеобласты (активные): особенности строения

Остеобласты - это клетки костной ткани, располагающиеся в верхних ее слоях, имеющие многоугольную, кубическую форму с различного вида отростками. Внутреннее содержимое мало чем отличается от других. Хорошо развитый зернистый эндоплазматический ретикуллум содержит различные элементы, рибосомы, аппарат Гольджи, округлой или овальной формы ядро богатое хроматином и содержащее ядрышко. Снаружи эти клетки костной ткани окружены тончайшими микрофибриллами.

Главная функция остеобластов - синтез компонентов межклеточного вещества. Это коллаген (преимущественно первого типа), гликопротеины матрикса (остеокальцин, остеонектин, остеопонтин, костный сиалопротеин), протеогликаны (бигликан, гиалуроновая кислота, декорин), а также различные костные морфогенетические белки, факторы роста, ферменты, фосфопротеины. Нарушение выработки всех этих соединений остеобластами наблюдается при некоторых заболеваниях. Например, недостаток витамина С (цинга) у детей характеризуется нарушением развития и роста костей вследствие дефекта синтеза коллагена и гликозаминогликанов. По этой же причине и замедляется восстановление костной ткани, заживление при переломах. Так как остеобласты фактически отвечают за рост, то присутствуют исключительно в развивающейся костной ткани.

Механизм минерализации остеобластами органического матрикса

Существует два способа:

  1. Отложение кристаллов гидроксилата вдоль фибрилл коллагена из перенасыщенной внеклеточной жидкости. Особую роль при этом отводят некоторым протеогликанам, которые связывают кальций и удерживают его в зонах зазоров.
  2. Секреция особых матричных пузырьков. Это мелкие мембранные структуры, которые синтезируются и выделяются остеобластами. В них в большой концентрации содержится фосфат кальция и щелочная фосфатаза. Особая микросреда, создаваемая внутри пузырьков, благоприятствует образованию первых гидроксиапатитовых кристаллов.

Скорость минерализации остеоида (костная ткань на стадии формирования) может существенно меняться, в норме она занимает около 15 суток. Нарушения могут происходить при снижении концентрации ионов кальция в крови или фосфата. Результатом этого является размягчение и деформация костей - остеомаляция. Аналогичные нарушения наблюдаются, например, при рахите (дефицит витамина D).

Неактивные (покоящиеся) остеобласты

Они образуются из активных остеобластов, у нерастущей кости покрывают около 80-95% ее поверхности. Они имеют уплощенную форму с веретеновидным ядром. Остальные органеллы редуцированы. Но сохраняются рецепторы, реагирующие на различные гормоны и факторы роста. Между покоящимися остеобластами и остеоцитами сохраняется связь и таким образом образуется система, регулирующая минеральный обмен. Если происходит какое-либо повреждение (травмы, переломы), то они активизируются, и начинается активный синтез коллагена, выработка органического матрикса. Другими словами, за счет их происходит регенерация костных тканей. В то же время они могут быть причиной злокачественной опухоли - остеосаркомы.

Остеоциты: строение и функции

Эти клетки составляют основу зрелой костной ткани. Форма у них веретенообразная, с множеством отростков. Органелл значительно меньше по сравнению с остеобластами, есть округлое ядро (в нем преобладает гетеохроматин) с ядрышком. Остеоциты располагаются в лакунах, но непосредственно с матриксом не соприкасаются, а окружены тонким слоем костной жидкости. За счет нее осуществляется питание клеток.

Аналогично отделены и их отростки, имеющие достаточно большую длину до 50 мкм, располагающиеся в специальных канальцах. Их очень много, костная ткань буквально пронизана ими, они образуют ее дренажную систему, в которой и содержится тканевая жидкость. Через нее осуществляется обмен веществ между межклеточным веществом и клетками. Также стоит отметить, что они не делятся, а образуются из остеобластов и являются основными компонентами в сформировавшейся костной ткани.

Основная функция остеоцитов - поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме. Они способны воспринимать механические напряжения, и чувствительны к электрическим потенциалам, возникающим при действии деформирующих сил. Реагируя на них, они запускают локальный процесс, при котором соединительная костная ткань начинает перестраиваться.

Остеокласты

Такое название получили крупные клетки, содержащие от 5 до 100 ядер, имеющие моноцитарное происхождение, разрушающие кости и хрящи или, по-другому, вызывающие их резорбцию. В цитоплазме остеокластов содержится много митохондрий, элементов ЭПС (зернистой) и аппарат Гольджи, рибосомы, а также различные по функции лизосомы. В ядрах содержится большое количество хроматина и есть хорошо различимые ядрышки. Также имеется достаточное количество цитоплазматических отростков, больше всего их располагается на поверхности, прилегающей к разрушаемой кости. Они увеличивают площадь соприкосновения с ней. Костная ткань начинает разрушаться при повышении уровня особого гормона (паратиреоидного), который приводит к активации остеокластов. Механизм этого процесса связывают с выделением ими углекислого газа, который под воздействием специального фермента (карбоангидраза) превращается в кислоту, имеющую название угольная, она и растворяет соли кальция.

Механизм резорбции костной ткани

Стоит отметить, что процесс разрушения протекает циклически, и периоды высокой активности каждой клетки неизменно сменяются периодами покоя. Резорбция протекает в несколько этапов:

  1. Прикрепление остеокласта к разрушаемой поверхности кости, при этом наблюдается выраженная перестройка его цитоскелета.
  2. Окисление содержимого лакун. Это происходит либо путем выделения в них содержимого вакуолей, имеющего кислую среду, либо в результате действия протонных насосов.
  3. Разрушение минерального компонента матрикса.
  4. Растворение органических соединений в результате действия ферментов, секретируемых остеокластами в лакуну и активированными кислой средой.
  5. Выведение продуктов разрушения костной ткани.

Регуляция деятельности остеокластов определяется общими и местными факторами. К первым, например, относятся паратгормон, витамин D, они стимулируют активность. А угнетающими являются кальцитонин и эстрогены. К местным относится такой фактор, как создание электрического локального поля при механическом напряжении, к которому эти клетки очень чувствительны.

Строение грубоволокнистой костной ткани

Второе ее название - ретикулофиброзная. Она формируется у зародыша, как будущая основа костей. У взрослого же человека ее присутствие минимально, она сохраняется в швах черепа после того, как они зарастают и в зонах, где сухожилия прикрепляются к костям, а также в участках остеогенеза, например, при заживлении различного рода переломов. Строение костной ткани этого вида специфическое. Коллагеновые волокна собраны в плотные пучки, которые расположены неупорядоченно, имеют между собой «перекладины». Она обладает низкой механической прочностью, содержание остеоцитов значительно выше по сравнению с пластинчатой разновидностью. В патологических условиях наращивание костной ткани этого типа происходит при переломе кости или при болезни Педжета.

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название "трабекулярное вещество". Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу - вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон - структурная единица костной ткани

Второе его название - гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки - неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Функции костной ткани

Среди основных функций можно перечислить следующие:

  1. Двигательная, опорная (биомеханическая).
  2. Защитная. Кости оберегают от повреждений головной мозг, сосуды и нервы, внутренние органы и т. д.
  3. Кроветворная: в костном мозге происходит гемо - и лимфопоэз.
  4. Метаболическая функция (участие в обмене веществ).
  5. Репараторная и регенераторная, заключающиеся в восстановлении и регенерации костной ткани.
  6. Морфобразующая роль.
  7. Костная ткань - это своеобразное депо минеральных веществ и ростовых факторов.

Средний химический состав костной ткани включает 20-25 % воды, 75-80 % сухого остатка, в том числе 30 % белков и 45 % неорганических соединений. Однако состав ткани изменяется в зависимости от вида и возраста животных, а также от структуры кости. Химический состав различных видов костей крупного рогатого скота представлен в табл. 5.5.

Таблица 55. Химический состав костей крупного рогатого скота

Кости

Содержание, %

влаги

белка

жира

золы

Позвоночник

30-41

14-23

13-20

20-30

Грудная кость

48-53

16-21

13-16

1Ф 17

Тазовая кость

24-30

16-20

22-24

30-33

Ребра

28 31

19-22

10-11

36-40

Трубчатая

15-23

17-23

13-24

40-50

Кулак

17 32

14-21

18 33

28-36

При обработке костной ткани кислотами (соляной, фосфорной и др.) минеральные вещества растворяются и остается мягкая органическая часть - оссеин. Размягчение кости в результате удаления минеральных веществ называют мацерацией. х

В структуру оссеина входят в основном белковые вещества -- коллаген (93 %), оссемукоид, альбумины, глобулины и др. Аминокислотный состав кости отличается низким содержанием глютаминовой кислоты, лизина, отсутствием цистина, триптофана; высоким содержанием глицина, пролнна, оксипролина, составляющих до 43 % обшей суммы аминокислот. Таким образом, белки кости не являются полноценными.

Из органических соединений в составе костной ткани присутствуют липиды, в частности лецитин, соли лимонной кислоты и пр.

Наиболее характерными компонентами костной ткани являются минеральные вещества, составляющие половину массы ткани. Они представлены главным образом фосфорно-кальциевыми солями, необходимыми для жизнедеятельности организма, а также микроэлементами - Al, Mn, Си, РЬ и др.

С возрастом животного наряду с общим увеличением содержания минеральных веществ в костной ткани нарастает содержание карбонатов и уменьшается количество фосфатов. В результате такого изменения кости утрачивают упругость и становятся хрупкими. Изменение свойств кости может быть связано и с недостатком определенных солей в питании, в частности при недостатке кальция при жомовом откорме. Электрооглушение такого скота приводит к раздроблению позвоночника и тазовых костей.

Костный мозг, заполняющий костномозговые полости, содержит в основном жиры (до 98 % в сухом остатке желтого мозга) и в меньшем количестве холинфосфатиды, холестерин, белки и минеральные вещества. В составе жиров преобладают пальмитиновая, олеиновая, стеариновая кислоты.

В соответствии с особенностями химического состава кость используют для производства полуфабрикатов, студней, зельцев, костного жира, желатина, клея, костной муки.

Хрящевая ткань. Хрящевая ткань выполняет опорную п механическую функции. Она состоит из плотного основного вещества, в котором располагаются клетки округлой формы, коллагеновые и эластиновые волокна (рис. 5.14). В зависимости от состава межклеточного вещества различают гиалиновые, волокнистые и эластичные хрящи. Гиалиновый хрящ покрывает суставные поверхности костей, из него построены реберные хрящи и трахея. В межклеточном веществе такого хряща с возрастом откладываются соли кальция. Гиалиновый хрящ полупрозрачен, имеет голубоватый оттенок.

Из волокнистого хряща состоят связки между позвонками, а также сухожилия и связки в месте их прикрепления к костям. Волокнистый хрящ содержит много коллагеновых волокон и незначительное количество аморфного вещества. Он имеет вид полупрозрачной массы.

Эластический хрящ кремового цвета, в межклеточном веществе которого преобладают эластиновые волокна. В эластическом хряще никогда не откладывается известь. Он входит в состав ушной раковины, гортани.

Средний химический состав хрящевой ткани включает: 40-70 % воды,

19-20 % белков, 3,5 % жиров, 2-10 % минеральных веществ, около 1 % гликогена.

Для хрящевой ткани характерно высокое содержание мукопротеида - хондромукоида и мукополисахарида - хондроитинсерной кислоты в основном межклеточном веществе. Важным свойством этой кислоты является её способность образовывать солеобразные соединения с различными белками: коллагеном, альбумином и др. Этим, видимо, объясняется «цементирующая» роль мукополисахаридов в хрящевой ткани.

Хрящевая ткань используется на пищевые цели, а также из нее вырабатываются желатин и клей. Однако качество желатина и клея часто бывает недостаточно высоким, так как мукополисахариды и глюкопротеиды переходят в раствор из ткани вместе с желатином, снижая вязкость и прочность студня.

Зубы располагаются в костных лунках - отдельных ячейках альвеолярных отростков верхней и нижней челюстей. Костная ткань - разновидность соединительной ткани, развивающаяся из мезодермы и состоящая из клеток, межклеточного неминерализованного органического матрикса (остеоид) и основного минерализованного межклеточного вещества.

5.1. ОРГАНИЗАЦИЯ И СТРОЕНИЕ КОСТНОЙ ТКАНИ АЛЬВЕОЛЯРНЫХ ОТРОСТКОВ

Поверхность кости альвеолярного отростка покрыта надкостницей (периост ), образованной преимущественно плотной волокнистой соединительной тканью, в которой различают 2 слоя: наружный - волокнистый и внутренний - остеогенный, содержащий остеобласты. Из остеогенного слоя надкостницы в кость проходят сосуды и нервы. Толстые пучки прободающих коллагеновых волокон связывают кость с надкостницей. Надкостница осуществляет не только трофическую функцию, но и участвует в росте и регенерации кости. Вследствие этого костная ткань альвеолярных отростков обладает высокой регенеративной способностью не только в физиологических условиях, при ортодонтических воздействиях, но и после повреждения (переломы).

Минерализованный матрикс организован в трабекулы - структурно-функциональные единицы губчатой костной ткани. В лакунах минерализованного матрикса и по поверхности трабекул располагаются клетки костной ткани - остеоциты, остеобласты, остеокласты.

В организме постоянно происходят процессы обновления костной ткани путём сопряженного по времени костеобразования и рассасы- вания (резорбция) кости. В этих процессах активно участвуют различные клетки костной ткани.

Клеточный состав костной ткани

Клетки занимают всего лишь 1-5% общего объёма костной ткани скелета взрослого человека. Различают 4 типа клеток костной ткани.

Мезенхимальные недифференцированные клетки кости находятся главным образом в составе внутреннего слоя надкостницы, покрывающей поверхность кости снаружи - периоста, а также в составе эндоста, выстилающего контуры всех внутренних полостей кости, внутренние поверхности кости. Их называют выстилающими , или контурными , клетками. Из этих клеток могут образовываться новые клетки кости - остеобласты и остеокласты. В соответствии с этой их функцией их также называют остеогенными клетками.

Остеобласты - клетки, находящиеся в зонах костеобразования на внешних и внутренних поверхностях кости. Остеобласты содержат достаточно большое количество гликогена и глюкозы. С возрастом это количество уменьшается в 2-3 раза. Синтез АТФ на 60% связан с реакциями гликолиза. По мере старения остеобластов реакции гликолиза активируются. В клетках протекают реакции цитратного цикла, и наибольшей активностью обладает цитратсинтаза. Синтезируемый цитрат используется в дальнейшем на связывание Ca 2+ , необходимого для процессов минерализации. Поскольку функцией остеобластов является создание органического межклеточного матрикса кости, эти клетки содержат большое количество РНК, необходимых для синтеза белков. Остеобласты активно синтезируют и выделяют во внеклеточное пространство значительное количество глицерофосфолипидов, которые способны связывать Ca 2+ и участвовать в процессах минерализации. Клетки сообщаются между собой через десмосомы, которые позволяют проходить Ca 2+ и цАМФ. Остеобласты синтезируют и выделяют в окружающую среду фибриллы коллагена, протеогликаны и гликозаминогликаны. Они также обеспечивают непрерывный рост кристаллов гидроксиапатитов и выступают в качестве посредников при связывании минеральных кристаллов с белковой матрицей. По мере старения остеобласты превращаются в остеоциты.

Остеоциты - древовидные клетки костной ткани, включенные в органический межклеточный матрикс, которые контактируют друг с другом через отростки. Остеоциты взаимодействуют и с другими клетками костной ткани: остеокластами и остеобластами, а также с мезенхимальными клетками кости.

Остеокласты - клетки, выполняющие функцию разрушения кости; образуются из макрофагов. Они осуществляют непрерывный управляемый процесс реконструкции и обновления костной ткани, обеспечивая необходимый рост и развитие скелета, структуру, прочность и упругость костей.

Межклеточное и основное вещество костной ткани

Межклеточное вещество представлено органическим межклеточным матриксом, построенным из коллагеновых волокон (90-95%) и основным минерализованным веществом (5-10%). Коллагеновые волокна в основном расположены параллельно направлению уровня наиболее вероятных механических нагрузок на кость и обеспечивают упругость и эластичность кости.

Основное вещество межклеточного матрикса состоит главным образом из внеклеточной жидкости, гликопротеинов и протеогликанов, участвующих в перемещении и распределении неорганических ионов. Минеральные вещества, размещённые в составе основного вещества в органическом матриксе кости представлены кристаллами, главным образом гидроксиапатитом Ca 10 (PO 4) 6 (OH) 2 . Соотношение кальций/фосфор в норме составляет 1,3-2,0. Кроме того, в кости обнаружены ионы Mg 2+ , Na + , K + , SO 4 2- , HCO 3- , гидроксильные и другие ионы, которые могут принимать участие в образовании кристаллов. Минерализация кости связана с особенностями гликопротеинов костной ткани и активностью остеобластов.

Основными белками внеклеточного матрикса костной ткани являются коллагеновые белки I типа, которые составляют около 90% органического матрикса кости. Наряду с коллагеном I типа присутствуют следы других типов коллагена, таких как V, XI, XII. Не исключено, что эти типы коллагена принадлежат другим тканям, которые и находятся в костной ткани, но не входят в состав костного матрикса. Например, коллаген V типа обычно обнаруживается в сосудах, которые пронизывают кость. Коллаген XI типа находится в хрящевой ткани и может соответствовать остаткам кальцифицированного хряща. Источником коллагена XII типа могут быть «заготовки» коллагеновых фибрилл. В костной ткани коллаген I типа содержит производные моносахаридов, имеет меньшее количество поперечных связей, чем в других видах соединительной ткани, и эти связи формируются посредством аллизина. Ещё одним возможным отличием является то, что N-концевой пропептид коллагена I типа фосфорилирован и этот пептид частично сохраняется в минерализованном матриксе.

В костной ткани содержится около 10% неколлагеновых белков. Они представлены гликопротеинами и протеогликанами (рис. 5.1).

Из общего количества неколлагеновых белков 10% приходится на долю протеогликанов. Вначале синтезируется большой хондроитин-

Рис. 5.1. Содержание неколлагеновых белков в межклеточном матриксе костной ткани [по Gehron R. P., 1992].

содержащий протеогликан, который по мере формирования костной ткани разрушается и замещается двумя малыми протеогликанами: декорином и бигликаном. Малые протеогликаны внедряются в мине- рализованный матрикс. Декорин и бигликан активируют процессы дифференцировки и пролиферации клеток, а также вовлечены в регуляцию отложения минералов, морфологию кристалла и объединение элементов органического матрикса. Первым синтезируется бигликан, содержащий дерматансульфат; он влияет на процессы клеточной пролиферации. В фазу минерализации появляется бигликан, связаный с хондроитинсульфатом. Декорин синтезируется позднее, чем бигликан, в стадию отложения белков для формирования межклеточного матрикса; он остаётся и в фазе минерализации. Предполагают, что декорин «отшлифовывает» молекулы коллагена и регулирует диаметр фибрилл. В ходе формирования кости оба белка продуцируются остеобластами, но когда эти клетки становятся остеоцитами, они синтезируют только бигликан.

Из костного матрикса в небольших количествах были выделены и другие типы малых протеогликанов, которые выступают в качестве

рецепторов и облегчают связывание факторов роста с клеткой. Эти типы молекул находятся в мембране или прикрепляются к клеточной мембране посредством фосфоинозитоловых связей.

В костной ткани также присутствует гиалуроновая кислота. Вероятно, она играет важную роль в морфогенезе этой ткани.

Помимо протеогликанов в кости определяется большое количество разнообразных белков, относящихся к гликопротеинам (табл. 5.1).

Как правило, эти белки синтезируются остеобластами и способны связывать фосфаты или кальций; таким образом они принимают участие в формировании минерализованного матрикса. Связываясь с клет- ками, коллагенами и протеогликанами, они обеспечивают образование надмолекулярных комплексов матрикса костной ткани (рис. 5.2).

В остеоиде присутствуют протеогликаны: фибромодулин, бигликан, декорин, коллагеновые белки и морфогенетический белок кости. В минерализованном матриксе замурованы остеоциты, которые связаны с коллагенами. На коллагенах фиксированы гидроксиапатиты, остеокальцин, остеоадерин. В минерализованном межклеточном

Рис. 5.2. Участие различных белков в образовании матрикса костной ткани.

Таблица 5.1

Неколлагеновые белки костной ткани

Белок

Свойства и функции

Остеонектин

Гликофосфопротеин, способный связывать Са 2+

Щелочная фосфатаза

Отщепляет фосфат от органических соединений при щелочных значениях pH среды

Тромбоспондин

Белок с мол. массой 145 кДа, состоящий из трех идентичных субъединиц, связанных друг с другом дисульфидными связями. Каждая субъединица имеет несколько различных доменов, которые придают белку способность связываться с другими белками костного матрикса - гепарансодержащими протеогликанами, фибронектином, ламинином, коллагеном I и V типов и остеонектином. В N-кон- цевой области тромбоспондина содержится последовательность аминокислот, обеспечивающая прикрепление клеток. На связывание тромбоспондина с рецепторами на поверхности клетки влияет кон- центрация Ca 2+ . В костной ткани тромбоспондин синтезируется остеобластами

Фибронектин

Связывается с поверхностью клеток, фибрином, гепарином, бактериями, коллагеном. В костной ткани фибронектин синтезируется на ранних стадиях остеогенеза и сохраняется в минерализован- ном матриксе

Остеопонтин

Гликофосфопротеин, содержащий N- и О-связанные олигосахариды; участвует в адгезии клеток

Костный кислый гликопротеин-75

Белок с мол. массой 75 кДа, содержит сиаловые кислоты и остатки фосфата. Способен связывать ионы Са 2+ , присущ кости, дентину и хрящевой ростковой пластинке. Ингибирует процессы резорбции костной ткани

Костный сиалопротеин

Адгезивный гликопротеин, содержащий до 50% углеводов

Матриксный Gla-белок

Белок, содержащий 5 остатков 7-карбоксиглутами- новой кислоты; способен связываться с гидроксиапатитом. Появляется на ранних стадиях развития костной ткани; белок обнаружен также в лёгких, сердце, почках, хряще

матриксе остеоадерин связывается с остеонектином, а остеокальцин с коллагеном. Морфогенетический белок кости располагается в приграничной зоне между минерализованным и неминерализованным матриксом. Остеопонтин регулирует активность остеокластов.

Свойства и функции белков костной ткани представлены в табл. 5.1.

5.2. ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ КОСТНОЙ ТКАНИ

В процессе жизнедеятельности кость постоянно обновляется, то есть разрушается и восстанавливается. При этом в ней происходят два противоположно направленных процесса - резорбция и восстановление. Соотношение этих процессов называется ремоделированием костной ткани.

Известно, что каждые 30 лет костная ткань изменяется почти полностью. В норме кость «растет» до 20-летнего возраста, достигая пика костной массы. В этот период прирост костной массы составляет до 8% в год. Далее до 30-35-летнего возраста идет период более или менее устойчивого состояния. Затем начинается естественное постепенное снижение костной массы, составляющее обычно не более 0,3-0,5% в год. После наступления менопаузы у женщин отмечается максимальная скорость потери костной ткани, которая достигает 2-5% в год и продолжается в таком темпе до 60-70 лет. В итоге женщины теряют от 30 до 50% костной ткани. У мужчин эти потери обычно составляют 15-30%.

Процесс ремоделирования костной ткани происходит в несколько этапов (рис. 5.3). На первом этапе участок костной ткани, подле-

Рис. 5.3. Стадии ремоделирования костной ткани [по Martin R.B., 2000, с изменениями].

жащий резорбции запускают остеоциты. Для активации процесса необходимо участие паратиреоидного гормона, инсулиноподобного фактора роста, интерлейкинов-1 и -6, простагландинов, кальцитриола, фактора некроза опухоли. Тормозится этот этап ремоделирования эстрогенами. На данном этапе поверхностные контурные клетки изменяют свою форму, превращаясь при этом из плоских округлых клеток в кубические.

Остеобласты и Т-лимфоциты секретируют лиганды рецепторов активатора фактора нуклеации каппа В (RANKL) и до определённого момента молекулы RANKL могут оставаться связанными с поверхностью остеобластов или стромальных клеток.

Из стволовой клетки костного мозга образуются предшественники остеокластов. Они имеют мембранные рецепторы, называемые рецепторами активатора фактора нуклеации каппа В (RANK). На следующем этапе RANK-лиганды (RANKL) связываются с RANK- рецепторами, что сопровождается слиянием нескольких предшественников остеокластов в одну крупную структуру и формируются зрелые многоядерные остеокласты.

Образующийся активный остеокласт создаёт на своей поверхности гофрированный край и зрелые остеокласты начинают резорбировать

костную ткань (рис. 5.4). На стороне прилегания остеокласта к разрушаемой поверхности различают две зоны. Первая зона - наиболее обширная, называемая щеточной каемкой, или гофрированным краем. Гофрированный край - это скрученная спиралью мембрана с множественными цитоплазматическими складками, которые обращены в сторону резорбции на костной поверхности. Через мембрану остеокласта освобождаются лизосомы, содержащие большое количество гидролитических ферментов (катепсины К, D, B, кислая фосфатаза, эстераза, гликозидазы и др). В свою очередь, катепсин К активирует матриксную металлопротеиназу-9, которая участвует в деградации коллагена и протеогликанов межклеточного матрикса. В этот период в остеокластах растёт активность карбоангидразы. Ионы НСО 3 - обме- ниваются на Cl - , которые накапливаются в гофрированном крае; туда же переносятся ионы H + . Секреция H + осуществляется за счёт очень активной в остеокластах Н + /К + -АТФазы. Развивающийся ацидоз способствует активации лизосомных ферментов и способствует разруше- нию минерального компонента.

Вторая зона окружает первую и как бы герметизирует область действия гидролитических ферментов. Она свободна от органелл и назы-

Рис. 5.4. Активация преостеокласта RANKL и формирование активным остеобластом гофрированной каймы, приводящей к резорбции костной ткани [по Edwards P. A., 2005, с изменениями].

вается чистой зоной, поэтому костная резорбция происходит только под гофрированным краем в замкнутом пространстве.

На стадии образования остеокластов из предшественников процесс может блокироваться белком остеопротегерином, который, свободно перемещаясь, способен связывать RANKL и таким образом предотвращать взаимодействие RANKL с RANK-рецепторами (см. рис. 5.4). Остеопротегерин - гликопротеин с мол. массой 60-120 кДа, относящийся к семейству рецепторов ФНО. Ингибируя связывание RANK с RANK-лигандом, остеопротегерин тем самым подавляет мобилизацию, пролиферацию и активацию остеокластов, поэтому увеличение синтеза RANKL приводит к резорбции костной ткани и, следовательно, к потере костной массы.

Характер ремоделирования костной ткани во многом определяется балансом между продукцией RANKL и остеопротегерина. Недифференцированные стромальные клетки костного мозга в большей степени синтезируют RANKL и в меньшей степени остеопротегерин. Возникающий дисбаланс системы RANKL/остеопротегерин при увеличении RANKL приводит к резорбции кости. Данное явление наблюдается при постменопаузальном остеопорозе, болезни Педжета, костных потерях при метастазах рака и ревматоидном артрите.

Зрелые остеокласты начинают активно поглощать кость, а завершают разрушение органической матрицы межклеточного вещества кости макрофаги. Резорбция длится около двух недель. Затем остеокласты в соответствии с генетической программой умирают. Апоптоз остеокластов может задерживаться при недостатке эстрогенов. На последнем этапе в зону разрушения прибывают плюрипотентные стволовые клетки, которые дифференцируются в остеобласты. В дальнейшем остеобласты синтезируют и минерализуют матрикс в соответствии с новыми условиями статической и динамической нагрузки на кость.

Существует большое число факторов, стимулирующих развитие и функции остеобластов (рис. 5.5). Вовлечение в процесс перестройки кости остеобластов стимулируется различными факторами роста - ТФР-(3, морфогенетическим белком кости, инсулиноподобным фактором роста, фактором роста фибробластов, тромбоцитов, колониестимулирующим и гормонами - паратирином, кальцитриолом, а также связывающим фактором ядра α-1 и тормозится белком лептином. Лептин - белок с мол. массой 16 кДа образуется преимущественно в адипоцитах; своё действие реализует через повышение синтеза цитокинов, факторов роста эпителия и кератиноцитов.

Рис. 5.5. Ремоделирование костной ткани.

Активные секретирующие остеобласты создают слои остеоида - неминерализованного матрикса кости и медленно восполняют полость резорбции. При этом они секретируют не только различные факторы роста, а также белки межклеточного матрикса - остеопонтин, остеокальцин и другие. Когда образующийся остеоид достигает диаметра 6?10 -6 м, он начинает минерализоваться. Скорость процесса минерализации зависит от содержания кальция, фосфора и ряда микроэлементов. Процесс минерализации управляется остеобластами и тормозится пирофосфатом.

Образование кристаллов минерального остова кости индуцирует коллаген. Формирование минеральной кристаллической решётки начинается в зоне, находящейся между коллагеновыми фибриллами. Затем они, в свою очередь, становятся центрами для отложения в пространстве между коллагеновыми волокнами (рис. 5.6).

Формирование кости происходит только в непосредственной близости от остеобластов, причём минерализация начинается в хряще,

Рис. 5.6. Отложение кристаллов гидроксиапатита на коллагеновых волокнах.

который состоит из коллагена, находящегося в протеогликановом матриксе. Протеогликаны повышают растяжимость коллагеновой сети. В зоне кальцификации происходит разрушение комплексов белок-полисахарид в результате гидролиза белкового матрикса лизосомальными ферментами клеток кости. По мере роста кристаллы вытесняют не только протеогликаны, но и воду. Плотная, полностью минерализованная кость, практически обезвожена; коллаген составляет 20% массы и 40% объема такой ткани; остальное приходится на долю минеральной части.

Начало минерализации характеризуется усиленным поглощением остеобластами молекул O 2 , активацией окислительно-восстановительных процессов и окислительного фосфорилирования. В митохондриях накапливаются ионы Ca 2+ и PO 4 3- . Начинается синтез коллагеновых и неколлагеновых белков, которые затем после посттрансляционной модификации секретируются из клетки. Формируются различные везикулы, в составе которых переносится коллаген, протеогликаны и гликопротеины. От остеобластов отпочковываются особые образования, называемые матриксными пузырьками, или мембранными везикулами. Они содержат в большой концентрации ионы Ca 2+ , которая превышает в 25-50 раз содержание их в остеобластах, а также глицерофосфолипиды и ферменты - щелочную фосфатазу, пирофосфатазу,

аденозинтрифосфатазу и аденозинмонофосфатазу. Ионы Ca 2+ в мембранных везикулах связаны преимущественно с отрицательно заряженым фосфатидилсерином. В межклеточном матриксе мембранные везикулы разрушаются с освобождением ионов Ca 2+ , пирофосфатов, органических соединений, связанных с остатками фосфорной кислоты. Присутствующие в мембранных везикулах фосфогидролазы, и в первую очередь щелочная фосфатаза, отщепляют фосфат от органических соединений, а пирофосфат гидролизуется пирофосфатазой; ионы Ca 2+ соединяются с PO 4 3- , что приводит к появлению аморфного фосфата кальция.

Одновременно происходит частичное разрушение протеогликанов, связанных с коллагеном I типа. Освобождающиеся фрагменты протеогликанов, заряженные отрицательно, начинают связывать ионы Ca 2+ . Некоторое число ионов Ca 2+ и PO 4 3 образуют пары и триплеты, которые связываются с коллагеновыми и неколлагеновыми белками, формирующими матрицу, что сопровождается образованием кластеров, или ядер. Из белков костной ткани наиболее активно связывают ионы Ca 2+ и PO 4 3 остеонектин и матриксные Gla-белки. Коллаген костной ткани связывает ионы РО 4 3 через ε-аминогруппу лизина с образованием фосфоамидной связи.

На образовавшемся ядре возникают спиралевидые структуры, рост которых идет по обычному принципу добавления новых ионов. Шаг такой спирали равен высоте одной структурной единицы кристалла. Формирование одного кристалла приводит к появлению других кристаллов; этот процесс называется эпитаксисом, или эпитаксической нуклеацией.

Рост кристалла высоко чувствителен к присутствию других ионов и молекул, которые ингибируют кристаллизацию. Концентрация этих молекул может быть небольшой, и они оказывают влияние не только на скорость, но на форму и направление роста кристаллов. Предполагают, что такие соединения адсорбируются на поверхности кристалла и тормозят адсорбцию других ионов. Такими веществами являются, например, гексаметафосфат натрия, который тормозит преципитацию карбоната кальция. Пирофосфаты, полифосфаты и полифосфонаты также тормозят рост кристаллов гидроксиапатита.

Через несколько месяцев, после того как полость резорбции восполнится костной тканью, плотность новой кости увеличивается. Остеобласты начинают превращаться в контурные клетки, которые участвуют в непрерывном выведении кальция из кости. Некоторые

из остеобластов превращаются в остеоциты. Остеоциты остаются в кости; они связаны друг с другом длинными клеточными отростками и способны воспринимать механические воздействия на кость.

По мере дифференцировки и старения клеток меняется характер и интенсивность обменных процессов. С возрастом в 2-3 раза уменьшается количество гликогена; освобождающаяся глюкоза в молодых клетках на 60% используется в реакциях анаэробного гликолиза, а в старых на 85%. Синтезированные молекулы АТФ необходимы для жизнеобеспечения и минерализации костных клеток. В остеоцитах остаются лишь следы гликогена, и основным поставщиком молекул АТФ является только гликолиз, за счёт которого поддерживается постоянство органического и минерального состава в уже минерализованных отделах костной ткани.

5.3. РЕГУЛЯЦИЯ МЕТАБОЛИЗМА В КОСТНОЙ ТКАНИ

Ремоделирование костной ткани регулируется системными (гормоны) и местными факторами, которые обеспечивают взаимодейс- твие между остеобластами и остеокластами (табл. 5.2).

Системные факторы

Образование кости в известной степени зависит от числа и активности остеобластов. На процесс образования остеобластов влияют

Таблица 5.2

Факторы, регулирующие процессы ремоделирования кости

соматотропин (гормон роста), эстрогены, 24,25(ОН) 2 D 3 , которые стимулируют деление остеобластов и превращение преостеобластов в остеобласты. Глюкокортикоиды, напротив, подавляют деление остеобластов.

Паратирин (паратгормон) синтезируется в паращитовидных железах. Молекула паратирина состоит из одной полипептидной цепи, содержащей 84 аминокислотных остатков. Синтез паратирина стимулирует адреналин, поэтому в условиях острого и хронического стресса количество этого гормона увеличивается. Паратирины активирует пролиферацию клеток-предшественников остеобластов, продлевает время их полужизни и ингибирует апоптоз остеобластов. В костной ткани рецепторы для паратирина присутствуют в мембранах остеобластов и остеоцитов. Остеокласты лишены рецепторов для данного гормона. Гормон связывается с рецепторами остеобластов и активирует аденилатциклазу, что сопровождается увеличением количества 3" 5" цАМФ. Такое повышение содержания цАМФ способствует интенсивному поступлению ионов Ca 2+ из внеклеточной жидкости. Поступивший кальций образует комплекс с кальмодулином и далее происходит активация кальцийзависимой протеинкиназы с последующим фос- форилированием белков. Связываясь с остеобластами, паратирин вызывает синтез остеокласт-активирующего фактора - RANKL, способного связываться с преостеокластами.

Введение больших доз паратирина приводит к гибели остеобластов и остеоцитов, что сопровождается увеличением зоны резорбции, повышением уровня кальция и фосфатов в крови и моче с одновре- менным повышением экскреции гидроксипролина вследствие разрушения коллагеновых белков.

Рецепторы к паратирину располагаются и в почечных канальцах. В проксимальных отделах почечных канальцев гормон ингибирует реабсорбцию фосфата и стимулирует образование 1,25(ОН) 2 D 3 . В дистальных отделах почечных канальцев паратирин усиливает реабсорбцию Ca 2+ . Таким образом, паратирин обеспечивает повышение уровня кальция и снижение фосфатов в плазме крови.

Паротин - гликопротеин, выделяемый околоушными и поднижне- челюстными слюнными железами. Белок состоит из α-, β -, и γ-субъединиц. Активным началом паротина является γ-субъединица, которая оказывает влияние на мезенхимные ткани - хрящ, трубчатые кости, дентин зуба. Паротин усиливает пролиферацию хондрогенных клеток, стимулирует синтез нуклеиновых кислот и ДНК в одонтобластах, про-

цессы минерализации дентина и костей. Эти процессы сопровождаются понижением содержания кальция и глюкозы в плазме крови.

Кальцитонин - полипептид, состоящий из 32 аминокислотных остат- ков. Секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации ионов Са 2+ и уменьшается при понижении концентрации ионов Са 2+ в крови. Она также зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает усиление мобилизации кальция в костной ткани и способствует развитию остеопороза. Кальцитонин связывается с специфическими рецепторами остеокластов и клеток почечных канальцев, что сопровождается активацией аденилатциклазы и повышением образования цАМФ. Кальцитонин влияет на транспорт ионов Ca 2+ через клеточные мембраны. Он стимулирует поглощение ионов Ca 2+ митохондриями и тем самым задерживает отток ионов Ca 2+ из клетки. Этот зависит от количества АТФ и соотношения ионов Na + и K + в клетке. Кальцитонин угнетает распад коллагена, что проявляется уменьшением экскреции с мочой гидроксипролина. В клетках почечных канальцев кальцитонин ингибирует гидроксилирование 25(ОН)D 3 .

Таким образом, кальцитонин подавляет активность остеокластов и ингибирует освобождение ионов Ca 2+ из костной ткани, а также уменьшает реабсорбцию ионов Ca 2+ в почках. В результате тормозится резорбция костной ткани, стимулируются процессы минерализации, что проявляется понижением уровня кальция и фосфора в плазме крови.

Йодсодержащие гормоны щитовидной железы - тироксин (Т4) и трийодтиронин (Т3) обеспечивают оптимальный рост костной ткани. Тиреоидные гормоны способны стимулировать секрецию гормонов роста. Они повышают как синтез мРНК инсулиноподобного фактора роста 1 (ИФР-1), так и продукцию самого ИФР-1 в печени. При гипертиреозе подавляется дифференцировка остеогенных клеток и синтез белка в этих клетках, снижается активность щелочной фосфатазы. За счёт усиленной секреции остеокальцина активируется хемотаксис остеокластов, что ведёт к резорбции костной ткани.

Половые стероидные гормоны участвуют в процессах ремоделирования костной ткани. Воздействие эстрогенов на костную ткань проявляется в активации остеобластов (прямое и опосредованное действие), угнетении остеокластов. Они также способствуют всасыванию ионов Ca 2+ в желудочно-кишечном тракте и его отложению в костной ткани.

Женские половые гормоны стимулируют продукцию кальцитонина щитовидной железой и снижают чувствительность костной ткани к паратирину. Они также вытесняют на конкурентной основе кортикостероиды из их рецепторов в костной ткани. Андрогены, оказывая анаболическое действие на костную ткань, стимулируют биосинтез белка в остеобластах, а также ароматизируются в жировой ткани в эстрогены.

В условиях дефицита половых стероидов, который имеет место в менопаузе, процессы костной резорбции начинают преобладать над процессами ремоделирования костной ткани, что и приводит к раз- витию остеопении и остеопороза.

Глюкокортикоиды синтезируются в коре надпочечников. Основной глюкокортикоид человека - кортизол. Глюкокортикоиды скоординировано действуют на разные ткани и разные процессы - как анаболические, так и катаболические. В костной ткани кортизол тормозит синтез коллагена I типа, некоторых неколлагеновых белков, протеогликанов и остеопонтина. Глюкокортикоиды также уменьшают количество тучных клеток, являющихся местом образования гиа- луроновой кислоты. Под влиянием глюкокортикоидов ускоряется распад белков. Глюкокортикоиды подавляют всасывание ионов Ca 2+ в кишечнике, что сопровождается снижением его в сыворотке крови. Это понижение приводит к выбросу паратирина, который стимулирует образование остеокластов и резорбцию кости (рис. 5.7). Кроме того, кортизол в мышцах и костях стимулирует распад белков, что также нарушает формирование костной ткани. В конечном итоге действия глюкокортикоидов приводят к убыли костной ткани.

Витамин D 3 (холекальциферол) поступает с пищей, а также образуется из предшественника 7-дегидрохолестерола под влиянием ультрафиолетовых лучей. В печени холекальциферол превращается в 25(ОН)D 3 , а в почках происходит дальнейшее гидроксилирование 25(ОН)D 3 и образуются 2 гидроксилированных метаболита - 1,25(ОН) 2 D 3 и 24,25(ОН) 2 D 3 . Метаболиты витамина D 3 регулируют хондрогенез и остеогенез уже в процессе эмбрионального развития. В отсутствии витамина D 3 невозможна минерализация органического матрикса, при этом не образуется сосудистая сеть, а метафизарная кость не способна сформироваться должным образом. 1,25(ОН) 2 D 3 связывается с хондробластами, находящимся в активном состоянии, а 24,25(ОН) 2 D 3 - с клетками в состоянии покоя. 1,25(ОН) 2 D 3 регулирует зоны роста через образование комплекса с ядерным рецептором для этого витамина. Также показано, что 1,25(ОН) 2 D 3 способен связы-

Рис. 5.7. Схема влияния глюкокортикоидов на обменные процессы, приводящие к убыли костной ткани

ваться с мембранно-ядерным рецептором, что приводит к активации фосфолипазы С и образованию инозитол-3-фосфата. Кроме того, образующийся комплекс активируется фосфолипазой А 2 . Из осво- бождающейся арахидоновой кислоты синтезируется простагландин Е 2 , который также влияет на ответ хондробластов при их связывании с 1,25(ОН) 2 D 3 . Напротив, после связывания 24,25(ОН) 2 D 3 со своим мембранно-связывающимся рецептором, активируется фосфолипаза С, а затем протеинкиназа С.

В хрящевой зоне роста эпифизов костной ткани 24,25(ОН) 2 D 3 стимулирует дифференцировку и пролиферацию прехондробластов, которые содержат специфические рецепторы к данному метаболиту. Метаболиты витамина D 3 оказывают влияние на формирование и функциональное состояние височно-нижнечелюстного сустава.

Витамин А . При недостатке и избыточном поступлении витамина А в организм детей нарушается рост костей и происходит их деформация. Вероятно, эти явления обусловлены деполимеризацией и гидролизом хондроитинсульфата, входящего в состав хряща.

Витамин С . При недостатке аскорбиновой кислоты в мезенхемаль- ных клетках не происходит гидроксилирование остатков лизина и пролина, что приводит к нарушению образования зрелого коллагена. Образующийся незрелый коллаген не способен связывать ионы Ca 2+ и таким образом нарушаются процессы минерализации.

Витамин Е . При дефиците витамина Е в печени не образуется 25(ОН)D 3 - предшественник активных форм витамина D 3 . Дефицит витамина Е также может привести к снижению уровня магния в костной ткани.

Локальные факторы

Простагландины ускоряют выход ионов Ca 2+ из кости. Экзогенные простагландины увеличивают генерацию остеокластов, которые раз- рушают кость. Оказывают катаболическое воздействие на обмен белков в костной ткани и ингибирует их синтез.

Лактоферрин - железосодержащий гликопротеин, в физиологической концентрации стимулирует пролиферацию и дифференцировку остеобластов, а также ингибирует остеокластогенез. Митогенный эффект лактоферрина на остеобластоподобные клетки осуществляется через специфические рецепторы. Образовавшийся комплекс путём эндоцитоза поступает в клетку, и лактоферрин фосфорилирует митоген - активирующие протеинкиназы. Таким образом, лактоферрин выполняет роль фактора роста кости и её здоровья. Может применяться в качестве анаболического фактора при остеопорозе.

Цитокины - низкомолекулярные полипептиды, обусловливающие взаимодействие клеток иммунной системы. Они обеспечивают ответную реакцию на внедрение чужеродных тел, иммунное повреждение, а также воспаления, репарации и регенерации. Они представлены пятью большими группами белков, одной из которых являются интерлейкины.

Интерлейкины (ИЛ ) - белки (от ИЛ-1 до ИЛ-18), синтезируемые в основном Т-клетками лимфоцитов, а также мононуклеарными фагоцитами. Функции ИЛ связаны с активностью других физиологически активных пептидов и гормонов. В физиологической концентрации подавляют рост, дифференцировку и продолжительность жизни клеток. Cнижают продукцию коллагеназы, адгезию эндотелиальных клеток к нейтрофилам и эозинофилам, продукцию NO и, как следс- твие, наблюдается уменьшение деградации хрящевой ткани и резорбция кости.

Процесс резорбции костной ткани может активироваться при ацидозе и большими количествами интегринов, ИЛ и витамина A, но тормозится эстрогенами, кальцитонином, интерфероном и морфогенетическим белком кости.

Маркёры метаболизма костной ткани

Биохимические маркёры дают информацию о патогенезе заболеваний скелета и о фазах ремоделирования костной ткани. Различают биохимические маркёры формирования и резорбции кости, характе- ризующие функции остеобластов и остеокластов.

Прогностическая значимость определения маркёров метаболизма костной ткани:

Проведённый скрининг с использованием данных маркёров позволяет определить пациентов с высоким риском развития остеопороза; высокие уровни маркёров резорбции костей могут быть связаны с

увеличением риска переломов; повышение уровня маркёров метаболизма костной ткани у пациентов с остеопорозом более чем в 3 раза по сравнению с показателями нормы предполагает иную костную патологию, включая злокачественную; маркёры резорбции могут быть использованы в качестве дополнительных критериев при решении вопроса о назначении специальной терапии при лечении костной патологии. Маркёры резорбции кости . Во время обновления костной ткани коллаген I типа, который составляет более 90% органического матрикса кости и синтезируется непосредственно в костях, деградирует, а небольшие пептидные фрагменты попадают в кровь или выделяются почками. Продукции деградации коллагена можно определять как в моче, так и в сыворотке крови. Эти маркёры можно использовать при терапии препаратами, снижающими резорбцию костей, у пациентов с болезнями, связанными с нарушениями метаболизма костной ткани. В качестве критериев резорбции костной ткани выступают продукты деградации коллагена I типа: N- и С-телопептиды и тартрат-резистентная кислая фосфатаза. При первичном остеопорозе и болезни Педжета происходит отчетливое повышение С-концевого телопептида коллагена I типа и количество этого маркёра увеличивается в сыворотке крови в 2 раза.

Распад коллагена - единственный источник свободного гидроксипролина в организме. Преобладающая часть гидроксипролина

катаболизируется, а часть выделяется с мочой, главным образом, в составе небольших пептидов (ди- и трипептидов). Поэтому содержание гидроксипролина в крови и моче отражает баланс скорости катаболизма коллагена. У взрослого человека в сутки экскретируется 15-50 мг гидроксипролина, в молодом возрасте до 200 мг, а при некоторых болезнях, связанных с поражением коллагена, например: гиперпаратироидизме, болезни Педжета и наследственной гипергидроксипролинемии, причиной которой является дефект фермента гидроксипролиноксидазы, количество в крови и выделяемого с мочой гидроксипролина увеличивается.

Остекласты секретируют тартрат-резистентную кислую фосфатазу. При возрастании активности остеокластов происходит увеличение содержания тартрат-резистентной кислой фосфатазы и она попадает в повышенном количестве в кровоток. В плазме крови активность этого фермента возрастает при болезни Педжета, онкологических заболеваниях с метастазами в кость. Определение активности этого фермента особенно полезно при мониторинге лечения остеопороза и онкологических заболеваний, сопровождающихся поражением костной ткани.

Маркёры формирования кости . Формирование костной ткани оценивают по количеству остеокальцина, костного изофермента щелочной фосфатазы и остеопротегерина. Измерение количества сывороточного остеокальцина позволяет определять риск развития остеопороза у женщин, проводить мониторинг костного метаболизма во время менопаузы и гормональной заместительной терапии. Рахит у детей раннего возраста сопровождается снижением в крови содержания остеокальцина и степень снижения его концентрации зависит от выраженности рахитического процесса. У больных с гиперкортицизмом и пациентов, получающих преднизолон, значительно снижено содержание остеокальцина в крови, что отражает подавление процессов костеобразования.

Изофермент щелочной фосфатазы присутствует на клеточной поверхности остеобластов. При увеличенном синтезе фермента клетками костной ткани повышается его количество в плазме крови, поэтому определение активности щелочной фосфатазы, особенно костного изофермента, является информативным показателем костного ремоделирования.

Остеопротегерин выступает в качестве рецептора ФНО. Связываясь с преостеокластами, он ингибирует мобилизацию, пролиферацию и активацию остеокластов.

5.4. РЕАКЦИЯ КОСТНОЙ ТКАНИ НА ДЕНТАЛЬНЫЕ

ИМПЛАНТАТЫ

При различных формах адентии альтернативой съёмному протезированию являются внутрикостные дентальные имплантаты. Реакцию костной ткани на имплантат можно рассматривать как частный случай репаративной регенерации.

Различают три вида соединения дентальных имплантатов с костной тканью:

Прямое приживление - остеоинтеграция;

Фиброзно-оссальная интеграция, когда вокруг дентального имплантата образуется слой фиброзной ткани толщиной около 100 мкм;

Периодонтальное соединение (самый редкий вид), образующееся в случае периодонтального связочно-подобного сращения с периимплантационными коллагеновыми волокнами или (в некоторых случаях) цементирование внутрикостного дентального имплантата.

Считают, что в процессе остеоинтеграции после постановки дентальных имплантатов образуется тонкая зона из протеогликанов, которая лишена коллагена. Зона склеивания дентального имплантата с костью обеспечивается двойным слоем протеогликанов, включающим молекулы декорина.

При фиброзно-оссальной интеграции в соединении имплантата с костной тканью также участвуют многочисленные компоненты внеклеточного матрикса. За устойчивость имплантата в его капсуле отвечают коллагены I и III типа, а фибронектин играет основную роль в связывании элементов соединительной ткани с имплантатами.

Однако через какой-то период времени под действием механической нагрузки растёт активность коллагеназы, катепсина К и кислой фосфатазы. Это приводит к убыли костной ткани в периимплантационной области и происходит дезинтеграция дентального имплантата. Ранняя дезинтеграция внутрикостных дентальных имплантатов происходит на фоне сниженного количества в кости фибронектина, Gla-белка, тканевого ингибитора матриксных металлопротеиназ (ТИМП-1).