Магнитное поле соленоида с сердечником. Соленоид. Магнитное поле соленоида

Рис. 6.23. Магнитные силовые линии поля: 1 - соленоида; 2 - полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид - это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh , находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением

На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?

Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R ), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R /l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

Подставляя численное значение d , находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

Пример 2. Найти магнитное поле В е в крайней торцевой точке оси соленоида конечной длины l . Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

Отношение полей в средней и крайней точках оси соленоида равно

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это - так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R , чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля

Магнитное поле соленоида.

В уточнённой модели соленоида конечной длины учтём более реальный вид навивки тонкого провода на каркас соленоида. Основным токонесущим элементом конструкции будем считать винтовую линию. Рассмотрим соленоид с каркасом в форме цилиндрической поверхности, поперечное сечение которой является окружностью радиуса . Пусть продольная ось соленоида, как в предыдущем примере, совпадает с осью аппликат, координаты конечных сечений соленоида на оси аппликат имеют значения и , тонкий проводник намотан на каркас равномерно с шагом , то есть число витков на единицу длины соленоида составляет величину , по проводнику течёт ток .


Радиус-вектор точки наблюдения М по условию определен координатами:

Радиус-вектор расположения элемента контура с током опишем с помощью параметрического представления:

Легко видеть, что при возрастании величины параметра на величину радиус-вектор совершит полный оборот вокруг продольной оси соленоида и сместится на шаг навивки относительно исходного положения в пространстве. Будем считать, что электрический ток течет по проводнику в направлении, определяемом увеличением параметра . Проекции вектора на оси декартовой системы координат имеют вид:

(3)

В соответствии с дифференциальной формой закона Био-Савара-Лапласа (1) раздела 6.2 получаем проекции вектора магнитной индукции на оси декартовых координат для произвольной точки наблюдения:

(3)

, (4) . (5)

Как это ни удивительно, но уточнённая модель приводит к более простым зависимостям для проекций дифференциала вектора магнитной индукции: для расчёта величин проекций искомого вектора понадобится только однократное интегрирование по параметру . Пределы интегрирования определяются при этом условием, что тонкий проводник достиг крайнего сечения соленоида:

Выпишем квадратуры для проекций вектора магнитной индукции на оси декартовой системы координат для произвольной точки наблюдения:

, (7)

, (8)

. (9)

Численные значения проекций вектора магнитной индукции на оси декартовой системы координат легко вычисляются с помощью пакета символьных вычислений Maple, если заданы характеристики системы токов и координаты точки наблюдения. Ниже для определенности положим Проведем вычисления осевой составляющей индукции магнитного поля в сечении z=0 в зависимости от координаты x (радиальное направление!). Результаты расчета представлены на рис. 2. Здесь имеет смысл обратить внимание на небольшую неоднородность магнитного поля внутри соленоида (|x|<1) и наличие осевой составляющей магнитного поля вне соленоида (последнее характерно для соленоида конечных размеров).


В качестве второго примера вычислим распределение осевой составляющей магнитной индукции вдоль оси соленоида при сохранении параметров системы токов (рис. 3). Здесь можно отметить качественное совпадение результатов расчета с подобными результатами упрощенной модели соленоида (рис.2 предыдущего раздела).


На практике чаще всего параметр навивки - отношение шага навивки к радиусу поперечного сечения соленоида - не играет существенной роли, но в отдельных случаях подробный расчет может оказаться полезным.

6.2.6. Поверхностная модель земного магнетизма .

У.Гильберт 400 лет тому назад установил, что Земля является «большим магнитом»: поведение стрелки компаса на земной поверхности похоже на поведение намагниченной стрелки в окрестности экспериментального магнитного шара. Во времена У.Гильберта ещё не было ни теории электричества, ни теории магнитного поля. В современных условиях интересно попробовать смоделировать образование магнитного поля Земли, играющего такую важную роль как обеспечении радиационной безопасности жизни на Земле, так и в практической навигации.

Допустим, что по поверхности сферы радиуса течёт ток постоянной по величине погонной плотности в азимутальном направлении. Величина погонной плотности тока определяется выражением

Здесь - дифференциал сила тока, - элемент дуги на поверхности сферы, перпендикулярный направлению тока, - дифференциал угловой координаты сферической системы координат.



Элемент длины «контура», связанного с описанным дифференциалом силы тока определяется выражением

, (2)

координаты точки расположения элемента имеют вид

, (3)

а его проекции на координатные направления декартовой системы координат

Если координаты точки наблюдения М определены проекциями радиус-вектора {x,y,z}, то не представляет труда выписать последовательно выражения для разности радиус-векторов точки наблюдения и точки расположения элемента контура с током, для модуля этой разности, для векторного произведения и получить зависимости для дифференциалов проекций вектора магнитной индукции в точке наблюдения:

(5)

Для реализации практических вычислений в приведенные соотношения вместо «штрихованных» величин необходимо подставить их выражения с использованием координат сферической системы координат (4).

В соответствии с принципом суперпозиции необходимо просуммировать вклад всех элементов «контуров» с током в величину каждой из проекций вектора магнитной индукции в точке наблюдения. Если декартовы координаты точки наблюдения записать с помощью сферических координат, то проекции вектора магнитной индукции на оси декартовой системы координат в точке наблюдения описываются следующими квадратурами:

Здесь , и - угловые координаты точки наблюдения в сферической системе координат.

Располагая полученными соотношениями, можно вычислить направляющие косинусы вектора магнитной индукции относительно исходной декартовой системы координат

, (7)

и записать уравнения для расчёта координат силовой линии в дифференциальной форме:

( для фиксированной точки силовой линии).

Интересно проанализировать зависимости «горизонтальной» и «вертикальной» составляющих вектора магнитной индукции над поверхностью несущей ток сферы от «северной широты» точки наблюдения. Численные результаты при этом таковы. На экваторе () горизонтальная составляющая поля направлена по меридиану в сторону «южного полюса», вертикальная составляющая равна нулю. На широте 45 0 () имеют место и горизонтальная, и вертикальная составляющие магнитного поля, причем абсолютная величина горизонтальной составляющей меньше, чем аналогичная величина на экваторе, а направленность в сторону южного полюса сохранилась. На «северном полюсе» () горизонтальная составляющая магнитного поля обращается в нуль, а вертикальная достигает максимального значения. Полученный результат объясняет причину трудностей определения местоположения в окрестности «северного полюса» сферы: компас теряет способность указывать направление на полюс.

6.2.7. Объёмная модель земного магнетизма .

Рассмотрим более сложную модель распределения электрического тока в земном шаре. Теперь нам предстоит рассчитать магнитное поле, образованное электрическим током, текущим в объёме сферы в азимутальном направлении с известной объёмной плотностью тока.

Допустим, что по объёму сферического тела радиуса течёт ток с постоянной по величине объёмно плотностью в азимутальном направлении. Элемент сила тока с учётом его направления в пространстве при этом можно описать с помощью выражения

В этом выражении - элемент объёма, в котором течёт ток, - координаты этого элемента объёма в сферической системе координат. Допустим, что координаты точки наблюдения имеют вид: { }. В соответствующей декартовой системе координат имеем

Найдем индукцию магнитного поля внутри соленоида – катушки, диаметр которой значительно больше ее длины l . Будем считать поле внутри катушки однородным, а вдали от катушки – пренебрежимо малым. Выберем контур обхода L в видепрямоугольника 1-2-3-4 (см. рис.). Найдем сначала циркуляцию вектора В. Запишем интеграл циркуляции в выражение . Разобьем интеграл по контуру L на четыре интеграла: 1-2, 2-3, 3-4, 4-1.

Контур 12341 охватывает N витков катушки в каждом из которых ток I . Таким образом, из теоремы следует, что B×l = m o NI . Отсюда найдем В .

Тема 9. Вопрос 8.

Поток вектора магнитной индукции (магнитный поток)

Представим себе некоторую замкнутую поверхность в магнитном поле. Линии магнитной индукции всегда замкнуты, они не имеют начала и конца, Поэтому количество входящих в поверхность линий будет равно количеству выходящих из нее линий. Магнитный поток пропорционален количеству линий индукции, следовательно, поток будет равен нулю. Равенство нулю магнитного потока через любую замкнутую поверхность свидетельствует о том, что магнитное поле не имеет источников этого поля (магнитных зарядов не существует). Таким образом, магнитное поле является вихревым , т.е. не имеющим источников его образования.

Тема 10. Вопрос 1.

Тема 10. Вопрос 2.

Магнитные силы.

Используя выражение для силы Ампера, найдем силу взаимодействия двух бесконечно длинных прямых проводников с токами I 1 и I 2 .

Мы рассматривали действие проводника с током I 1 на проводник с током I 2 . В соответствии с III законом Ньютона второй проводник действует на первый с такой же силой.

Тема 10. Вопрос 3.

Получение выражения для вращающего момента, действующего на контур с током в магнитном поле.

Учитывая векторный характер этих величин, можно записать общее выражение:

Тема 10. Вопрос 4.

Контур с током в магнитном поле.

Однородное поле.

Таким образом, во внешнемоднородном магнитном поле под действием магнитных сил:

1)свободно ориентированный контур с током будет поворачиваться до тех пор, пока плоскость контура не окажется перпендикулярной линиям индукции, т.е. пока магнитный момент не станет параллельным линиям индукции и

2)на контур будут действовать растягивающие силы.

Неоднородное поле.

В неоднородном магнитном поле кроме указанных выше сил, которые поворачивают и растягивают контур, появляется составляющая сил, которая стремится переместить контур. Если контур оказался ориентированным своим магнитным моментом по полю (как на рисунке), то составляющая силы F 1 будет растягивать контур, а составляющая F 2 будет втягивать контур в область более сильного поля. Если контур окажется в поле таким образом, что его магнитный момент будет направлен против поля, это положение контура будет неустойчивым. Контур развернется по полю, и будет втягиваться в область более сильного поля.

Приведем выражение для силы, действующей на контур с током в неоднородном магнитном поле, индукция которого изменяется только по одной координате х .

Тема 10. Вопрос 5.

Соленоид представляет собой провод, навитый равномерно в виде спирали на общий цилиндрический каркас (см. рис. 12.14). Произведение (IN) числа витков однослойной намотки соленоида на силу тока, обтекающего витки, называется числом ампер-витков.

Соленоиды предназначены для создания в небольшом объеме пространства достаточно сильного магнитного поля. При плотной намотке витков поле соленоида эквивалентно полю системы круговых параллельных токов с общей осью. Если диаметр d витков соленоида во много раз меньше его длины (d  l), то соленоид считается бесконечно длинным (или тонким). Магнитное поле такого соленоида практически целиком сосредоточено внутри, причем вектор магнитной индукции внутри направлен вдоль оси соленоида и связан с направлением тока правилом правого винта.

Рис. 12.15

Рассмотрим воображаемый замкнутый контур внутри соленоида (рис. 12.15). Этот контур не охватывает токов, поэтому по теореме о циркуляции

Разобьем этот круговой интеграл на четыре интеграла (по сторонам контура) и учтем, что на отрезках (1-2) и (3-4) вектор перпендикулярен
, поэтому скалярное произведение (,
) здесь обращается в ноль. Индукция поля во всех точках отрезка (2-3) одинакова и равна 23 , а на отрезке (4-1)  41 , причем l 23 = l 41 = l.

Таким образом, обойдя контур по часовой стрелке, получим

Так как l 0, то В 23 = В 41 = В внутри.

Поскольку контур внутри соленоида был выбран произвольно, то полученный результат справедлив для любых внутренних точек соленоида, то есть поле внутри соленоида однородное:

внутри = const.

Чтобы найти величину индукции этого поля, рассмотрим контур L 2 (а –b –c –d –а ), охватывающий N витков с током (рис. 12.15). Согласно теореме о циркуляции (и на основании предыдущих рассуждений), получим соотношение

Поле снаружи бесконечно длинного соленоида очень слабое ( снаружи =0), им можно пренебречь, следовательно,

(12.35)

где n=N/l - число витков, приходящихся на единицу

длины соленоида.

Таким образом, индукция магнитного поля внутри бесконечно длинного соленоида одинакова по величине и направлению и пропорциональна числу ампер-витков, приходящихся на единицу длины соленоида.

Симметрично расположенные витки вносят одинаковый вклад в магнитную индукцию на оси соленоида, поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине того значения, которое дает формула (12.35), т.е.

(12.36)

Практически, если (l  d ), то формула (12.35) справедлива для точек в средней части соленоида, а формула (12.36) – для точек на оси вблизи его концов.

Применяя закон Био-Савара-Лапласа, можно найти магнитную индукцию поля соленоида конечной длины (рис. 12.16) в произвольной точке А на его оси:

(12.37)

где
- углы между осью соленоида и радиус- вектором, проведенным из рассматриваемой точки к концам соленоида.

Поле такого соленоида неоднородное, величина индукции зависит от положения точки А и длины соленоида. Для бесконечно длинного соленоида
,
, и формула (12.37) переходит в формулу (12.35).

Лабораторная работа № 9

Изучение магнитного поля соленоида

1.Цель работы

Изучение распределения магнитного поля конечного соленоида при помощи явления электромагнитной индукции.

2.Краткое теоретическое введение

Соленоид – это цилиндрическая катушка, обмотка которой состоит из большого числа витков проволоки, образующих винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов, имеющих общую ось. Индукция магнитного поля в любой точке соленоида равно векторной сумме индукций магнитных полей, создаваемых в данной точке всеми витками. Вектор магнитной индукций в точке, лежащей на оси соленоида конечных размеров, направлен вдоль оси, а его значение вычисляется по формуле:

, (1)

где L - длина соленоида, R –радиус его витков,

Х – расстояние от края соленоида до исследуемой точки,

I – сила тока, протекающего по виткам,

n - число витков на единицу длина соленоида,

Относительная магнитная проницаемость среды,

μ0 - магнитная постоянная.

Единицей измерения индукции магнитного поля в системе СИ является «Тесла»: [B] = Тл

Из выражения (1) следует, что индукция магнитного поля максимальна на оси соленоида в точке, соответсвующей его середине:

. (2)

Если длина соленоида намного превышает радиус его витков, то соленоид можно условно считать бесконечно длинным. Магнитное поле внутри бесконечно длинного соленоида является однородным, при этом его индукция равна:

. (3)

Распределение магнитного поля соленоида конечной длины является более сложным по сравнению с простейшим случаем бесконечно длинного соленоида. Для многих других конфигураций магнитного поля, теоретический расчет которых затруднителен, предпочтительней определять магнитную индукцию экспериментально.

Величину можно измерить, использую, например, явление электромагнитной индукции. Если в некоторую точку магнитного поля поместить не большой контур, то при изменениях магнитного потока, пронизывающего этот контур, в последнем возникнет э. д.с., индукции, электромагнитной индукции (закону Фарадея), имеем:

В настоящей работе в качестве контура используется измерительная катушка (ИК), состоящая из большого количества витков N. Возникающая в ней э. д.с. индукции складывается из э. д.с. отдельных витков, т.е.

, (5)

где S –площадь поперечного сечения ИК.

Если в обмотке соленоида протекает переменный ток, то магнитное поле, создаваемое этим током, также является переменным, т. е.

, (6)

где В0 - амплитудное значение магнитной индукции,

– циклическая частота переменного тока.

Из формул (5) и (6) следует, что э. д.с. индукции, наведения ИК, изменяется во времени по закону:

e = e0 sin(wt) (7)

где e0 - амплитудное значение э. д.с., равное

e0 = NSwB0 = kB0 , (8)

Коэффициент называется градуировочной постоянной измерительной установки. Ее можно определить экспериментально.

Вольтметр, используемый для измерения э. д.с. индукции e, показывает эффективное значение переменного напряжения U, связанное с амплитудным значением э. д.с. (e0) соотношением:

https://pandia.ru/text/80/314/images/image011_30.gif" width="92" height="26"> . (10)

Из формул (9) и (10) следует, что отношение эффективного напряжения в любой точке нахождения ИК к его максимальному эффективному значению в центре соленоида равно отношению магнитной индукции в этой точке к максимальной магнитной индукции в центре соленоида:

. (11)

Поэтому распределение индукции магнитного поля соленоида можно изучать, не вычисляя градуировочную постоянную измерительной установки k.

3.Описание экспериментальной установки.

Внутри исследуемого соленоида при помощи стрежня с указателем, скользящим вдоль шкалы, может перемещаться измерительная катушка. Ось катушки параллельна оси соленоида. ИК можно передвигать и в направлении, перпендикулярном оси соленоида. Установка собирается по электрической схеме, приведенной на рис.1. Обмотка соленоида питается переменным током, измеряемым амперметром и изменяемым при помщи реостата. Э. д.с. индукции, возникающая в ИК, измеряется вольтметром. Это эффективное значение э. д.с. индукции, связанное с амплитудным значением индукции магнитного поля соленоида в точке нахождения ИК по формуле (9).

Измерения сводятся к фиксации координаты расположения ИК относительно соленоида и значения э. д.с. индукции, соответствующего этому положения.

4.Рабочее задание

Задание 4.1. Распределение индукции магнитного поля конечного соленоида.

4.1.1. Соберите электрическую цепь по схеме на рис.1

4.1.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.1.3. Изменяя положение ИК относительно соленоида, измерьте э. д.с. индукции. ИК следует перемещать вдоль оси соленоида 2 см, записывая для каждой координаты показания вольтметра в таблицу 4.1.

4.1.4..gif" width="84" height="45">, пользуясь расчетными формулами (1),(2). Сравните экспериментальную и теоретическую зависимости. Оцените систематическую погрешность проведенных измерений.

Таблица 4.1.

Задание 4.2. Зависимость величины магнитной индукции от силы тока в соленоиде.

4.2.1. Установите ИК в середине соленоида, где магнитное поле максимально.

4.2.2. Для разных значений тока в соленоиде измерьте э. д.с. индукции, наведенной в ИК. Для этих же значений тока рассчитайте значения магнитной индукции в центре конечного соленоида, пользуясь формулой (2). Результаты измерений и вычислений занесите в таблицу 4.2.

4.2.3. Постройте, желательно используя метод наименьших квадратов, график зависимости 0 " style="border-collapse:collapse;border:none">

Ток соленоида, Ic, A

Э. д.с. индукции

Индукция магнитного поля

Предел измерения

Показание прибора

Значение тока

Вmax, 10-3 Тл

Рис 1.Электрическая схема экспериментальной установки

Задание 4.3. Радиальное распределение индукции магнитного поля конечного соленоида.

4.3.1. Установите ИК на краю соленоида.

4.3.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.3.3. Передвигая Ик в направлении, перпендикулярном оси соленоида, измерьте э. д.с. индукции. ИК следует перемещать на 0,5 см, записывая для каждой координаты показания вольтметра в таблицу 4.3.

4.3.4. Зная значение градуировочной постоянной измерительной установки, вычислите по формуле (9) для каждой координаты значение индукции магнитного поля.

4.3.5. Постройте график зависимости В = f(х).

4.3.6. Установите ИК в центре соленоида.

4.3.7. Выполните для этого положения ИК задания п. п. 4.3.4.-4.3.6.

4.3.8. Перепишите в тетрадь следующие постоянные величины: длину соленоида, его диаметр, число его витков, длину измерительной катушки, ее диаметр, число ее витков.

Таблица 4.3.

В приложении приведена программа для обработки результатов лабораторной работы на ЭВМ. При вводе экспериментальных данных не забудьте перевести их в систему единиц СИ.

5.Контрольные вопросы

5.1. Что такое индукция магнитного поля?

5.2. Какие методы измерения магнитной индукции Вы знаете?

5.3. В чем заключается явление электромагнитной индукции?

5.4. Можно ли в данной работе использовать источник постоянного тока?

5.5. Какова природа возникновения э. д.с. индукции в ИК?

5.6. Выведите формулу индукции магнитного поля бесконечно длинного соленоида.

5.7. Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?

5.8. Каков источник систематической погрешности?

6.Литература

6.1. Калашников.-М.:Наука, 1977.

6.2. Сивухин курс физики.-М.: Наука, 1977.

6.3. Матвеев и магнетизм. -М.: Высшая школа, 1991.

6.4. , Малов общей физики: Электричество и магнетизм.-М.: Просвещение, 1980.