Модуль упругости - что это такое? Определение модуля упругости для материалов. Определение модуля упругости методом изгиба

Цель работы: Получить зависимость между деформацией и напряжением при деформациях растяжения и сжатия. Определить модуль Юнга для стали.

Приборы и материалы: Прибор для изучения, деформации растяжения, состоящий из рамы, линейки, дисков известной массы, микрометр, индикаторы линейных перемещений, установка Ф3ПА, штангенциркуль.

Деформацией твердого тела называется изменение размеров и формы тела или его частей. Деформация может быть следствием теплового расширения, воздействия электрических или магнитных полей, внешних механических сил. Деформация называется упругой, если она исчезает полностью после снятия нагрузки и пластической, если после снятия нагрузки она не исчезает. Строго го­воря, абсолютно упругих тел не существует, но при определенных условиях величиной остаточных деформаций можно пренебречь. Твердые тела с хорошей точностью можно считать упругими, пока деформация не превышает некоторого предела, который называется пределом упругости.

При деформации твердого тела внутри него возникают силы, которые называются силами упругости. Мерой сил упругости слу­жит напряжение

s=dF/dS ,

где dF - результирующая сила упругости, действующая на элементарную площадку dS . Если си­ла dF направлена перпендикулярно к площадке, то напряжение называется нормальным, если сила параллельна площадке, то на­пряжение называется касательным.

Простейшим видом деформации является растяжение или сжатие тела. Рассмотрим деформацию растяжения однородной прово­локи под действием внешней силы, направленной вдоль ее оси. Напряжение, которое возникает при такой деформаций, является нормальным и однородным, т. е. имеет одинаковое значение по все­му сечению проволоки. Поэтому

Величина внутренних сил F при однородной деформации растя­жения (сжатия) равна приложенной внешней силе.

Пусть начальная длина проволоки l о, а длина ее после деформации l, тогда удлинение проволоки Dl = l l 0 . Величина e=Dl/l о называется относительной деформацией растяжения.

Опытным путем установлено, что напряжение, возникающее в упруго деформируемом теле при однородной деформации, прямо пропорционально величине относительной деформации

Записанное соотношение выражает закон Гука.

Закон Гука выполняется только при малых деформациях, когда их величина не превышает предела упругости. При пластической деформации закон Гука не имеет места.

Коэффициент пропорциональности Е называется модулем про­дольной упругости или модулем Юнга.

Модуль Юнга является одной из важнейших механических характеристик твердого тела и определяет его способность сопротив­ляться внешним механическим воздействиям.

Измерение модуля Юнга можно проводить прямым методом, измеряя растяжение или сжатие тела, либо из измерения деформации изгиба.

Установка (рис. 4) состоит из осно­вания 1, двух вертикальных стоек 2, двух перекладин: верхней 3 и нижней 4. Иссле­дуемая проволока крепится к верхней перекладине и проходит через отверстие в нижней перекладине. К проволоке жест­ко прикреплены две горизонтальные площадки А и В. При растяжении проволоки площадки перемещаются вместе с ней. На перекладинах укреплены индикаторы ли­нейных перемещений 6 и 7, стержни ко­торых упираются в площадки А и В. При деформации проволоки индикаторы фик­сируют перемещение площадок А и В, поэтому разность их показаний равна удлинению участка проволоки АВ, который является рабочим участком. Использование двух индикаторов позволяет ис­ключить из результата измерений деформацию проволоки в месте ее закрепления.

Внизу к проволоке прикреплена платформа 8, которая нагружа­ется дисками известной массы. На приборе укреплена миллиметро­вая линейка, с помощью которой определяется длина проволоки.

1. Определение модуля Юнга методом растяжения

1. Микрометром несколько раз измерить диаметр проволоки d в различных местах. Результаты занести в таблицу 1.

Таблица 1

2. Измерить длину рабочего участка проволоки l o . Нагружая плат­форму дисками, снять показания индикаторов a 1 и a 2 и массу дис­ков т , те же измерения провести при разгружении платформы.

Результаты измерений занести в таблицу 2.

Таблица 2

3. Заполнить таблицу 1 в соответствии с правилами обработки результатов прямых измерений. Доверительную вероятность при­нять равной Р =0,67, в этом случае коэффициент Стьюдента t = l. Доверительный интервал Dd рассчитать по формуле

где q d - погрешность микрометра.

По среднему значению диаметра найти площадь сечения про­волоки S.

4. Для каждой строки таблицы 2 рассчитать суммарную массу дисков М, растягивающих проволоку; напряжение s = Mg/S; удли­нение проволоки при нагружении и разгружении Dl =a i -a z ; отно­сительную деформацию e= D1 /1 о .

5. Построить на миллиметровой бумаге график зависимости s от e .

Найти модуль Юнга Е , как тангенс угла наклона графика к оси абсцисс

Е =Ds /De .

6. Определить относительную погрешность измерения модуля Юнга:

где S e - среднее квадратическое отклонение модуля Юнга по случайному разбросу точек; q 1 -погрешность линейки.

Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования

œКузбасский государственный технический университет

Кафедра сопротивления материалов

ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ ПЕРВОГО РОДА

И КОЭФФИЦИЕНТА ПУАССОНА

Методические указания к лабораторной работе по дисциплине œСопротивление материалов для студентов технических специальностей

Составители И. А. Паначев М. Ю. Насонов

Утверждены на заседании кафедры Протокол № 8 от 31.01.2011 Рекомендованы к печати учебно-методической комиссией специальности 150202 Протокол № 6 от 02.03.2011 Электронная копия находится в библиотеке ГУ КузГТУ

Кемерово 2011

Цель работы : определение экспериментальным способом "упругих" постоянных материала – стали ВСт3

модуля продольной упругости (модуля упругости I рода, модуля Юнга);

коэффициента поперечной деформации (коэффициента Пуассона).

” 1. Модуль продольной упругости (модуля упругости I рода, модуль Юнга) – определение и использование

п. 1. Обозначение

Модуль продольной упругости обозначается латинской буквой – " Е ".

п. 2. Смысловое определение

Е – это характеристика жесткости (упругости) материала, показывающая его способность сопротивляться продольному деформированию (растяжению, сжатию) и изгибу.

п. 3. Свойства Е

1. Е – это "упругая" постоянная материала, применение которой справедливо только в пределах линейных упругих деформаций материала, т. е. в пределах действия закона Гука (рис. 1).

Участок действия

закона Гука –

Е = tgα

Рис. 1. Диаграмма растяжения стали ВСт3 А-В – участок линейной зависимости между деформациями – ε

и напряжениями – σ (участок действия закона Гука); В-С – участок нелинейной зависимости между деформациями

и напряжениями

2. Е связывает между собой в формуле закона Гука при растяжении (сжатии) деформации и напряжения и графически оценивается следующим образомЕ = tg (см. рис. 1).

3. Материал с большим числовым значением Е является более жестким и требует больших усилий при его деформировании.

4. Большинству материалов соответствует определенное постоянное (константа) значение Е .

5. Значения Е для основных материалов приводятся в справочниках по сопротивлению материалов и справочниках машиностроителя, а в случае отсутствия данных в справочниках – определяются экспериментально.

п. 4. Использование Е

Е используется в сопротивлении материалов при оценке проч-

ности, жесткости и устойчивости элементов конструкций:

1) при расчете на прочность в процессе определения экспериментальным способом напряжений по измеренным деформациям

≤ [σ]; (1) 2) при расчетах на жесткость в процессе теоретического опреде-

ления деформаций

3) при расчете на устойчивость в процессе решения всех типов задач.

п. 5. Численное определение

Е численно равен напряжению, которое могло бы возникнуть

в брусе при его упругом растяжении на 100% (в 2 раза).

Е – характеристика условная, т. к. при его определении условно считают, что любой материал способен упруго деформируясь, увеличиваться в длину бесконечное число раз, хотя известно

– не более чем на 2% (кроме резины, каучука).

Основа 100% принята для удобства применения Е в формулах закона Гука.

Е практически определяют при растяжении образца на долю процента и увеличением полученного напряжения в соответствующее число раз.

Пример 1 : при растяжении образца на = 1% возникающие в образце напряжения – равны, например, 1000 МПа (10 000 кг/см2 ), тогда модуль упругости будет равен

Е = 100 = 100 000 МПа (1 000 000 кг/см2 ).Пример 2: = 0,1%= 100 МПа (1 000 кг/см2 )

Е = 1000 = 100 000 МПа (1 000 000 кг/см2 ).

п. 6. Единицы измерения Е

Е имеет размерность: [кН/см 2 ] или [МПа].

п. 7. Примеры числового значения Е

Модуль упругости Е для разных материалов равен

2,1 104 кН/см2

2,1 105 МПа

2 100 000 кг/см2

1,15 104 кН/см2

1,15 105 МПа

1 150 000 кг/см2

1,0 104 кН/см2

1,0 105 МПа

1 000 000 кг/см2

алюминий – 0,7 104 кН/см2

0,7 105 МПа

700 000 кг/см2

0,15 104 кН/см2

0,15 105 МПа =

150 000 кг/см2

каучук –

0,00008 104 кН/см2 = 0,0008 105 МПа = 80 кг/см2 .

Из имеющихся в списке данных можно сделать вывод о соотношении жесткостей материалов (жесткость материала пропорционально зависит от модуля упругости). Например, сталь в 2 раза жестче меди, поэтому при рассмотрении однотипных образцов, выполненных из стали и меди, для их растяжения на одинаковую длину в границах упругих деформаций, к стальному образцу необходимо прикладывать нагрузку в два раза большую при сравнении с медным.

” 2. Коэффициент поперечной деформации (коэффициент Пуассона) –

определение и использование

п. 1. Обозначение

Коэффициент Пуассона обозначается греческой буквой " " (мю).

п. 2. Смысловое определение

– упругая механическая характеристика материала, характеризующая способность материала деформироваться в попереч-

ном направлении при продольном приложении нагрузки, так как при растяжении образца наряду с его продольным удлинением имеет место еще и его поперечное сужение (рис. 2).

Рис. 2. Продольное и поперечное деформирование образца при растяжении

Из рис. 2 следует, что абсолютные деформации образца

l = l1 – l0 ,

b =b 1 –b 0 ,

где l иb – абсолютное удлинение и абсолютное сужение об-

l 0и l 1

разца (абсолютные деформации);

– начальная и конечная длина образца;

b 0и b 1

– начальная и конечная ширина образца.

Если принять, что l 1 l 0

L, а b1 b0 = b,

то относитель-

ные деформации образца будут равны:

L /l

" = b /b,

– относительная продольная и относительная попе-

речная деформации образца (относительное удли-

нение и относительное сужение).

численно равен отношению относительного сужения образца к его относительному удлинению при его продольном деформировании, т. е. отношению между относительными поперечной и продольной деформациями. Это отношение выражается

формулой

п. 3. Свойства

1. Каждому материалу соответствует определенное постоянное значение (константа) .

2. Для большинства материалов численное значение приводится в справочниках по сопротивлению материалов и справочниках машиностроителя, в ином случае определяется экспериментально.

п. 4. Использование

Используется в сопротивлении материалов как коэффициент в формуле обобщенного закона Гука (2) и связывает между собой модули упругости первого и второго рода, что будет рассмотрено далее.

п. 5. Единицы измерения

– безразмерная величина (б/в).

п. 6. Пределы изменения

Обобщенно для известных исследованных изотропных (имеющих одинаковые упругие свойства по всем направлениям) материалов интервал изменения коэффициента Пуассона= 0 0,5.

п.7. Примеры числового значения

Коэффициент Пуассона – для различных видов материа-

пробковое дерево – 0.

3. Описание испытательного оборудования

В лабораторной работе для растяжения образца используется разрывная машина Р-5 (рис. 3).

Рис. 3. Схема разрывной машины Р-5: 1 – рукоять; 2 – гайку; 3 – винт;

9 –силоизмеритель; 10 – тензометры

Установка в ходе эксперимента работает нижеследующим образом. Вращение рукояти /1/ передается через редуктор на гайку /2/, которая вызывает вертикальное перемещение винта /3/. Это приводит к растяжению образца /6/, закрепленного в захватах /4/ и /5/. Усилие в образце создается системой рычагов /7/ и маятником /8/. Величина усилия фиксируется по шкале силоизмерителя /9/. Для определения абсолютных продольных и поперечных деформаций используются тензометры рычажного типа (тензометр Гуггенбергера) /10/.P

Рис. 4. Рычажный тензометр (тензометр Гуггенбергера): а – общий вид; б – упрощенная схема;

l бт – база тензометра;l бт – изменение базы тензометра; 1 – образец; 2 – винт; 3 – крепежная струбцина;

Цена4 – измерительнаяодного малого шкала;деления5 шкалы– указательнаятензометрастрелка;– С тен з равна 0,0016 – шарнир;мм (0,00017 – неподвижнаясм/дел.). опора; 8 – подвижная опора

Тензометр может измерять деформации только того участка, на котором он расположен, т. е. участка, называемого "базой тензометра" , но не может измерять абсолютные деформации всего образца, если конечно длина образца не равна базе тензометра.

В связи с тем, что измерения в эксперименте будут производиться тензометрами с размерами (базами) значительно меньшими размеров испытываемого образца, то длина и ширина измеряемого участка образца будет ограничиваться базами продольных и поперечных тензометров.

E и – это характеристики материала, а не образца, поэтомуE и, полученные при измерении деформаций участка образца, будут такими же, как и при измерении деформаций всего образца.

п. 3. Расположение тензометров и измерительных участков на образце

В лабораторной работе для повышения точности получаемых результатов значения E и будут определяться по двум уча-

сткам испытываемого образца, расположенных на его противоположных гранях (рис. 5).

I участок

II участок

Рис. 5. Схема расположения исследуемых участков образца и тензометров на образце

1, 2 – продольные тензометры 3, 4 – поперечные тензометры; (пунктиром показаны тензометры на невидимой грани образца)

Такое расположение тензометров обусловлено тем, что в процессе растяжения образца линии действия растягивающих сил Р не всегда совпадают с продольной осью образца, т. е. имеет место эксцентриситет (смещение линии действия силР от продольной оси). Средние показания тензометров, взятые с двух участков образца, дадут истинную картину.

п. 4. Замечания

1. Приложение к образцу дополнительной нагрузки, равной ступени нагружения, должно давать каждый раз одну и ту же величину приращения его длины. Это связано с тем, что растяжение образца в данной лабораторной работе ведется только в пределах упругих свойств материала, в границах действия закона Гука, представляющего собой линейную зависимость между нагрузкой и деформацией. Данное положение позволяет проводить эксперимент многократно, используя в качестве основы постоянную дополнительную нагрузку, равную ступени нагружения – Р , при равномерном увеличении общей нагрузки. Для приведения экспериментальной установки в рабочее

состояние используется предварительная ступень нагруже-

ния – Р 0 .

2. F обр – площадь сечения испытательного образца определяется в соответствии с рис. 6.

h = 0,3 см

а = 8 см

” 3. Рабочие формулы для определения модуля продольной упругости – Е и коэффициента Пуассона –

В лабораторной работе искомые характеристики определяются с учетом ступенчатого способа приращения силы и равенство размеров испытываемых участков базам продольных и поперечных тензометров:

1) Е определяется из формулы (3) – закон Гука (II вид) –

l N l;

P lбт

l бтF обр

где P

– приращение силы, прикладываемой к образцу (ступень

l бт

нагружения);

– база продольного тензометра;

l бт – изменение базы продольного тензометра;F обр – площадь сечения образца.

Приложение:

Измерение модуля продольной упругости, модуля сдвига и коэффициента Пуассона (поперечной деформации) в недисперсионных изотропных конструкционных материалах.

Общие сведения:

Определяется как отношение напряжения (сила на единицу площади) к деформации сжатия.

Определяется как отношение напряжения сдвига к деформации сдвига.

Коэффициент Пуассона отношение относительного поперечного сжатия к относительному продольному растяжению.

Эти основные свойства материалов обязательно учитываются в производстве и в различных научных исследованиях, и определяются с помощью измеренных значений скорости звука и плотности материала. Скорость распространения звука легко вычисляется путем ультразвукового контроля в режиме импульс-эхо с использованием соответствующего оборудования. Представленная ниже процедура действительна для любого однородного, изотропного, недисперсионного материала (скорость звука не изменяется с частотой). Сюда включены наиболее распространенные металлы, промышленная керамика и стекло, при условии, что размеры поперечного сечения не близки длине волны частоты контроля. Жесткие пластики, такие как полистирол и акрил, также могут быть измерены, несмотря на то, что они имеют высокий коэффициент затухания ультразвука.

Каучук не может быть измерен ультразвуковым методом по причине высокой степени дисперсии и нелинейно упругих свойств. Мягкие пластики точно так же показывают высокую степень затухания в режиме сдвиговых волн, и обычно не могут быть измерены. В случае анизотропных материалов, упругость варьируется в зависимости от направления, так же как и скорость распространения продольных волн и/или сдвиговых волн. Для генерации полной матрицы модуля упругости в анизотропных образцах обычно требуется шесть серий ультразвуковых измерений. Пористость или зернистость материала может влиять на точность измерения модуля упругости, поскольку вызывает колебания скорости звука исходя из размера и ориентации зерен или размера и распределения пор, вне зависимости от упругости материала.

Оборудование:

Для измерения скорости звука при расчете упругости обычно используются прецизионные толщиномеры 38DL PLUS или 45MG с ПО для одноэлементных ПЭП , или дефектоскопы с функцией измерения скорости звука (например, серии EPOCH). Генераторы/приемники модели 5072PR или 5077PR в комбинации с осциллографом или дискретизатором сигналов также могут использоваться для измерения времени распространения волн. Для данного теста потребуется два преобразователя, подходящих для эхо-импульсного измерения скорости звука в материале продольными и поперечными волнами. Среди наиболее используемых ПЭП: широкополосный преобразователь продольных волн M112 или V112 (10 МГц) и преобразователь поперечных волн с нормальным углом падения V156 (5 МГц). Они подходят для измерения наиболее распространенных металлов и обожженных керамических образцов. Для измерения очень толстых и очень тонких материалов или образцов с высоким затуханием ультразвука требуются специальные преобразователи. В некоторых случаях применяется теневой метод контроля (метод сквозного прозвучивания) с использованием двух преобразователей, расположенных на одной оси, по разные стороны проверяемого изделия. При выборе преобразователя или настройке прибора необходимо проконсультироваться со специалистом Olympus.

Тестовый образец может быть любой формы, позволяющей выполнять эхо-импульсное измерение времени прохождения ультразвука через материал. Обычно, это образец толщиной 12,5 мм с ровными параллельными поверхностями, ширина или диаметр которого больше диаметра используемого преобразователя. Необходимо проявлять крайнюю осторожность при измерении узких образцов по причине возможных пограничных эффектов, которые могут повлиять на измеренное время прохождения импульса. При использовании сильно тонких образцов, разрешение будет ограничено из-за небольших колебаний во времени прохождения импульса через короткий УЗ-путь. Мы рекомендуем брать образцы толщиной минимум 5 мм, но желательно толще. Во всех случаях толщина тестового образца должна быть точно известна.

Процедура:

Измерьте скорость распространения продольных и сдвиговых волн тестового образца с использованием подходящих ПЭП и настроек прибора. Для измерения скорости сдвиговых волн потребуется специальная контактная жидкость высокой вязкости, как например SWC. Толщиномеры 38DL PLUS и 45MG могут напрямую измерять скорость звука в материале на основе введенной толщины образца, а дефектоскопы серии EPOCH измеряют скорость звука в ходе калибровки скорости звука. В обоих случаях, следуйте рекомендуемой процедуре измерения скорости звука, представленной в руководстве по эксплуатации прибора. При использовании генератора/приемника, зафиксируйте время прохождения сигнала туда и обратно через участок известной толщины с помощью преобразователей продольных и поперечных волн, и рассчитайте:

При необходимости, переведите единицы измерения скорости звука в дюйм/с или см/с. (Время обычно измеряется в микросекундах; для получения измерений в дюйм/с или см/с умножьте дюйм/мкс или см/мкс на 10 6 .) Полученные значения скорости звука могут использоваться в следующих формулах.


Примечание: Если скорость звука выражена в см/с, а плотность – в г/см 3 , модуль упругости будет выражен в дин/см 2 . Если вы используете английскую систему мер (дюйм/с и фунт/дюйм 3) для расчета модуля упругости в фунтах на кв. дюйм (PSI), не путайте фунт (единицу измерения силы) с фунтом (единицей измерения массы). Поскольку модуль упругости выражен как сила на единицу площади, при расчете в английской системе мер необходимо умножить результат вышеуказанной формулы на коэффициент пересчета масса/сила (1 / ускорение свободного падения) для получения значения упругости в фунтах на кв. дюйм. Если исходные расчеты выполнены в метрических единицах, используйте коэффициент конверсии 1 psi = 6,89 x 10 4 дин/см 2 . Вы также можете ввести скорость звука в дюймах/с, а плотность – в г/см 3 , а затем разделить на коэффициент пересчета 1,07 x 10 4 для получения упругости в PSI.

Для определения модуля сдвига умножьте квадрат скорости распространения поперечной волны на плотность.
Опять же, используйте единицы измерения см/с и г/см 3 для получения модуля упругости в дин/см 2 или английскую систему мер (дюйм/с и фунт/дюйм 3) и умножьте результат на коэффициент пересчета масса/сила.

Библиография
Подробнее об измерении модулей упругости ультразвуковым методом см. в представленных ниже источниках:
1. Moore, P. (ed.), Nondestructive Testing Handbook, Volume 7, American Society for Nondestructive Testing, 2007, pp. 319-321.
2. Krautkramer, J., H. Krautkramer, Ultrasonic Testing of Materials , Berlin, Heidelberg, New York 1990 (Fourth Edition), pp. 13-14, 533-534.

Цель работы: экспериментальное определение модулей упругости пластин, изготовленных из различных материалов, методом изгиба.

Приборы и принадлежности: установка «Модуль Юнга», пластины, набор грузов массой 0.05 кг, 0.1 кг и 0.15 кг.

Элементы теории и метод эксперимента

В различных элементах конструкций и машин часто возникают только продольные усилия, которые вызывают в них деформацию растяжения или сжатия.

Английский ученый XVII века Роберт Гук открыл фундаментальную закономерность между силами и вызываемыми ими перемещениями, устанавливающую прямопропорциональную зависимость удлинения образца от растягивающей силы.

Английский ученый XIX века Томас Юнг впервые высказал идею о том, что для каждого материала существует постоянная величина, характеризующая его способность сопротивляться воздействию внешних нагрузок. Понятие об этой величине, названной им «модулем упругости» (позднее «модулем Юнга»), было сформулировано в 1807 г. в труде «Натуральная философия».

Модуль упругости характеризует важнейшее свойство конструкционного материала – жесткость – и является фундаментальным понятием, без которого не обходится ни один инженерный расчет элементов конструкций и сооружений. На рис. 1 изображен стержень с прямолинейной осью под действием продольных сил N, где

σ – нормальное напряжение,

A – площадь поперечного сечения стержня.

Рис. 1. Продольные и поперечные деформации стержня

При действии продольных сил стержень деформируется. Если он растянут, то длина его увеличивается и становится равной L +∆ L , где L – это абсолютная продольная деформация (удлинение) стержня. Поперечные размеры его уменьшаются и принимают значения H –∆ H и B –∆ B , где H и B – это абсолютные поперечные деформации стержня.

Отношение абсолютной продольной деформации стержня к его первоначальной длине называется относительной продольной деформацией:

Отношение абсолютной поперечной деформации стержня к его первоначальному поперечному размеру называется относительной поперечной деформацией:

Здесь знак «+» у деформации и знак «–» у деформаций и поставлены потому, что при растяжении продольные размеры стержня увеличиваются, а поперечные уменьшаются.

Последний шаг в формировании закона Гука в его современном виде сделали французский математик Коши, который в 1822 г. ввел в научную литературу понятия «напряжение» и «деформация», и французский ученый Навье, который в 1826 г. дал определение модуля упругости как отношение нагрузки, приходящейся на единицу площади поперечного сечения, к произведенному ею относительному удлинению

Где E – модуль Юнга (модуль упругости первого рода).

Таким образом, закон Гука получил практическое применение в виде формулы

Модуль упругости E является физической постоянной материала и определяется экспериментально. Его величина выражается в тех же единицах, что и напряжения σ, т. е. в паскалях (Па), так как ε – безразмерная величина. Модуль упругости большинства материалов имеет большие числовые значения и его обычно выражают в гигапаскалях (ГПа).

Абсолютное значение отношения относительной поперечной деформации и относительной продольной деформации при растяжении или сжатии в области действия закона Гука называется коэффициентом Пуассона

Это безразмерный коэффициент, характеризующий свойства материала и определяемый экспериментально. Он носит имя французского ученого, который впервые ввел его в теорию.

После приложения к телу внешней нагрузки его точки перемещаются. Обычно величины упругих перемещений считаются малыми по сравнению с геометрическими размерами деформируемых тел. Рассмотрим эти перемещения на примере консольной балки длиной L с односторонней внешней заделкой, изображенной на рис. 2. К свободному концу балки приложена сосредоточенная сила F , которая и вызывает деформации ее точек. Прогиб балки в текущем сечении обозначим δ . Выделим элемент объема балки длиной Dz , находящейся на расстоянии Z от закрепленного конца.

Рис. 2. Изгиб консольной балки

Деформированное состояние в текущем сечении балки описывается радиусом кривизны или кривизной ее изогнутой оси .

Известно , что уравнение изогнутой оси балки имеет вид:

Где IX – осевой момент инерции сечения балки относительно оси Ox . Произведение EIX называется жесткостью сечения при изгибе относительно соответствующей оси.

На рис. 3 изображено произвольное сечение, представляющее собой плоскую геометрическую фигуру, площадь которой A . Выделим на ней элементарную площадь DA .

Определим момент инерции прямоугольного сечения относительно осей СX и СY , проходящих через его центр, как это показано на рис. 4.

Разделим площадь прямоугольника на элементарные прямоугольники с размерами B и Dy , площадь которых . Подставляя значение в выражение (9) и интегрируя, получаем:

Аналогично

Рассмотрим балку длиной L , установленную на двух опорах и нагруженную, как это изображено на рис. 5.

Решение дифференциального уравнения (8) можно получить последовательным интегрированием. Когда внешняя нагрузка расположена симметрично относительно опор, как показано на рис. 5, то решение этого уравнения примет вид:

Поэтому модуль Юнга определяется формулой

С учетом выражения (10) получим

Следовательно, определив нагрузку F и значение прогиба δ для балки (пластины) длиной L с поперечными размерами сечения B и H , по формуле (14) можно вычислить модуль Юнга материала, из которого она изготовлена.

Описание экспериментальной установки

Схематичное изображение установки «Модуль Юнга» приведено на рис. 6.

Установка «Модуль Юнга» состоит из основания 1, на котором закреплена стойка 2. На стойке расположен кронштейн 3 с двумя призматическими опорами 4. На опоры устанавливается исследуемый образец 5 (пластина). С помощью устройства нагружения образца 7, представляющего собой скобу с призматической опорой, к образцу прикрепляются наборный груз 6 и часовой индикатор 8.

Порядок выполнения работы

1. Поставить одну из исследуемых пластин на призматические опоры 4.

2. Установить часовой индикатор 8 так, чтобы его наконечник коснулся пластины.

3. Повесить скобу устройства 7 посередине пластины.

4. Прикрепить на скобу груз массой M 1 =0,1 кг.

5. По шкале индикатора 8 определить значение прогиба пластины δ1 .

6. Снять груз.

7. Повесить на скобу груз массой M 2 =0,15 кг.

8. По шкале индикатора 8 определить значение прогиба пластины δ2 .

Где G – ускорение свободного падения.

10. Значение прогиба пластины определить как

11. Найти модуль Юнга по формуле (14), где L =0,114 м – расстояние между призмами (длина пластины); B =0,012 м – ширина сечения пластины; H =0,0008 м – толщина пластины; δ – величина прогиба пластины, м.

12. Проделать указанные выше действия со второй пластиной.

13. Повторить для обеих пружин пп. 1-12 еще два раза.

Материал исследуемых образцов — сталь пружинная и бронза.

Поясните полученные результаты модулей упругости пластин, сравните их со справочными данными .

Порядок оценки погрешностей

Считать, что погрешность оценки величины модуля Юнга по формуле (14) определяется погрешностью измерения длины пластины L (систематическая погрешность) и погрешностью оценки прогиба d (систематическая + случайная погрешности).

Записать результаты прямых измерений указанных параметров:

А) L =< L > ± DL , Где DL = DL Сист ;

Б) d=< D> ± Dd, Где , .

Записать результаты косвенных измерений:

Е=<Е> ± DЕ, Где , , , , .

Вопросы и задания для самоконтроля

1. Чем отличается нормальное напряжение от касательного?

2. По каким формулам определяются абсолютная и относительная деформации?

3. Какая величина называется модулем упругости первого рода?

4. Как определяется коэффициент Пуассона?

5. Что называется жесткостью сечения при изгибе?

6. В чем заключается различие формул осевого момента инерции сечения относительно осей Ox и Oy ?

7. Какой формулой выражается прогиб двухопорной балки?

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м 2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (10 12 Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σ раст в МПа:

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:

E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.