Находить равнодействующую всех сил рисунку. Равнодействующая сила — Гипермаркет знаний

Это векторная сумма всех сил, действующих на тело.


Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Взаимосвязь со вторым законом Ньютона

Вспомним закон Ньютона:

Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.


Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно . Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.

Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.


Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело; затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения. Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.

Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.



Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.



Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Блок - механическое устройство, колесо, вращающееся вокруг своей оси. Блоки могут быть подвижными и неподвижными.

Неподвижный блок используется лишь для изменения направления силы.

Тела, связанные нерастяжимой нитью, имеют одинаковые по величине ускорения.

Подвижный блок предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то для подъёма груза потребуется сила вдвое меньше, чем вес груза. Действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом.

Ускорение тела А в два раза меньше ускорения тела В.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст.


Обычно на любое движущееся тело действует не одно, а сразу несколько окружающих его тел. Например, во время падения тела на него действует не только Земля (сила тяжести), но и воздух (сила сопротивления).

В тех случаях, когда на частицу (материальную точку) действует несколько тел, их общее действие характеризуют равнодействующей силой .

Для нахождения равнодействующей силы существуют простые правила.

1. Если к телу приложены две силы F 1 и F 2 , направленные по одной прямой в одну сторону, то их равнодействующая F находится по формуле

F = F 1 + F 2 .

При этом направление равнодействующей силы совпадает с направлением приложенных сил (рис. 32).

2. Если к телу приложены две силы F 1 и F 2 , направленные по одной прямой в противоположные стороны, то при F 1 > F 2 их равнодействующая F находится по формуле

F = F 1 - F 2 .

Направление равнодействующей силы в этом случае совпадает с направлением большей из приложенных сил (рис. 33). Если при этом F 1 = F 2 , то их равнодействующая F окажется равной нулю. В этом случае покоящееся тело так и будет покоиться, а движущееся тело будет совершать равномерное и прямолинейное движение с той скоростью, которая у него была.

Про две силы, равные по величине и направленные вдоль одной прямой в противоположные стороны, говорят, что они уравновешивают или компенсируют друг друга. Равнодействующая F таких сил всегда равна нулю и потому изменить скорость тела не может.

Для изменения скорости тела относительно Земли необходимо, чтобы равнодействующая всех приложенных к телу сил была отлична от нуля. В том случае, когда тело движется в направлении равнодействующей силы, его скорость возрастает; при движении в противоположном направлении скорость тела убывает.

Так, например, во время полета парашютиста на него действуют две силы - сила тяжести и сила сопротивления воздуха. На начальной стадии спуска сила тяжести превышает силу сопротивления и их равнодействующая оказывается направленной вниз. Благодаря этому скорость падения парашютиста на данной стадии полета непрерывно увеличивается. Однако по мере увеличения скорости полета действующая на парашютиста сила сопротивления становится все больше и больше. После раскрытия парашюта сила сопротивления воздуха резко возрастает и становится больше силы тяжести. Равнодействующая этих двух сил оказывается направленной вверх, и скорость парашютиста начинает уменьшаться.

Для безопасного спуска человека площадь купола парашюта должна составлять 40-50 м 2 . При этом минимальная скорость приземления оказывается равной 4-5 м/с.

Слово «парашют» в переводе с французского означает «предотвращающий падение». Идея его создания принадлежит Леонардо да Винчи (1452-1519). Однако первый прыжок с парашютом (с крыши высокой башни) был совершен лишь в 1617 г. венецианским инженером и механиком Ф. Веранцио. Его парашют был далек от совершенства и представлял собой раму, обтянутую полотном.

Первый ранцевый парашют, который располагался на спине человека и раскрывался при помощи вытяжного кольца, был создан в 1911 г. русским изобретателем Г. Е. Котельниковым.

1. Как находится равнодействующая двух сил, направленных по одной прямой в одну сторону? 2. Как находится равнодействующая двух сил, направленных по одной прямой в противоположные стороны? Куда она направлена? 3. Как будет двигаться тело, если к нему приложить две равные силы, которые направлены по одной прямой, но в противоположные стороны?

Если на твердое тело действует много сил, то движение тела зависит только от суммы всех этих сил и от суммы их моментов. Это обстоятельство позволяет иногда заменить совокупность всех действующих на тело сил одной силой, которую называют в таком случае равнодействующей. Очевидно, что по величине и направлению равнодействующая сила равна сумме всех сил, а ее точка приложения должна быть выбрана таким образом, чтобы ее момент был равен суммарному моменту всех сил.

Наиболее важный случай такого рода - сложение параллельных сил. Сюда относится, в частности, сложение сил тяжести, действующих на отдельные части твердого тела.

Рассмотрим какое-либо тело и определим полный момент сил тяжести относительно произвольно выбранной горизонтальной оси (ось Z на рис. 5). Сила тяжести, действующая на элемент m i тела, равна m i g, а ее плечо есть координата x i этого элемента. Поэтому суммарный момент всех сил равен

Равнодействующая сила по величине равна полному весу тела и если обозначить координату ее точки приложения через X, то тот же момент N z запишется в виде (24)

Приравняв оба выражения, найдем (25)

Но это есть не что иное, как х-координата центра инерции тела.

Таким образом, мы видим, что всю совокупность действующих на тело сил тяжести можно заменить одной силой, равной полному весу тела и приложенной к его центру инерции. В связи с этим центр инерции тела часто называют также его центром тяжести.

Сведение системы параллельных сил к одной равнодействующей силе, однако, невозможно, если сумма сил равна нулю. Действие такой совокупности сил может быть сведено к действию, как говорят, пары сил: двух сил, равных по величине и противоположных по направлению. Легко сообразить, что сумма N z моментов таких двух сил относительно любой оси Z, перпендикулярной плоскости их действия, одинакова и равна произведению величины F на расстояние h между направлениями действия обеих сил (плечо пары ): N z =Fh .

Действие пары сил, оказываемое ею на движение тела, зависит только от этого, как говорят, момента пары .

Методика проведения эксперимента и описание установки

Задачи работы : экспериментальное исследование закономерностей гироскопического эффекта, опытное определение полного момента инерции гироскопа.

Приборы и принадлежности: гироскоп ФМ-18, электронный блок, штангенциркуль.

Гироскопом называет массивное тело, вращающееся с большой скоростью вокруг неподвижной оси симметрии. В экспериментальной установке, показанной на рис. 6, гироскопом служит металлический диск 1 с горизонтально расположенной осью 2, который приводится во вращение электродвигателем 3. Ось гироскопа опирается на шарнир 4, закреплённый на подставке 5. Горизонтальное положение оси обеспечивается противовесом 6. Смещая противовес вдоль градуированной шкалы 7, можно создавать дополнительный момент силы тяжести, действующий на гироскоп при его вращении.


Установка работает от блока управления. Левое табло показывает частоту вращения маховика гироскопа – после включения индуцирует начальную частоту. Правое табло индуцирует время поворота гироскопа вокруг вертикальной оси на 90 0 .

Установка позволяет наблюдать так называемый гироскопический эффект, заключающийся в том, что попытка повернуть ось гироскопа в определённой плоскости Х приводит на самой деле к повороту в плоскости, перпендикулярной плоскости Х. Допустим, что в первоначальном положения противовес 6 уравновешивает гироскоп так, что полный момент сил, действующих на гироскоп, . В этих условиях согласно закону сохранения момента импульса должно выполняться равенство и ось гироскопа остаётся горизонтальной и неподвижной.

Попытаемся теперь повернуть ось гироскопа в вертикальной плоскости по часовой стрелке. Для этого сдвинем противовес от положения равновесия на некоторое расстояние (см. рис. 7). При этом на гироскоп будет действовать момент силы тяжести N, направленный вдоль оси Oу и по величине равный (26)

Согласно уравнению динамики вращательного движения твердого тела

Поэтому момент силы вызовет за время изменение момента импульса , равное (28)

Важно отметить, что вектор направлен, как вектор , по оси Oy, т.е. перпендикулярно первоначальному направлению вектора . В результате вектор момента импульса гироскопа займет в пространстве новое положение

что соответствует повороту оси гироскопа в горизонтальной плоскости на некоторый угол . При постоянно действующем моменте силы гироскопический эффект приведет к равномерному горизонтальному вращению оси гироскопа с относительно малой угловой скоростью

Установим связь между и другими параметрами гироскопа. Из рис. 2 следует, что

Для малых углов , тогда, подставляя (29) в (30), получаем.

В инерциальных системах отсчета изменение скорости тела возможно только при действии на него другого тела. Количественно действие одного тела на другое выражают при помощи такой физической величины, как сила (). Воздействие одного тела на другое может вызвать изменение скорости тела, как по величине, так и по направлению. Следовательно, сила является вектором и определяется не только величиной (модулем), но и направлением. Направление силы определяет направление вектора ускорения тела, на которое оказывает воздействие рассматриваемая сила.

Величину и направление силы определяет второй закон Ньютона:

где m - масса тела, на которое действует сила - ускорение, которое сила сообщает рассматриваемому телу. Смысл второго закона Ньютона заключен в том, что силы, которые действуют на тело, определяют как изменяется скорость тела, а не просто его скорость. Заметим, что второй закон Ньютона выполняется исключительно в инерциальных системах отсчета.

Если на тело действует одновременно несколько сил, то тело перемещается с ускорением, которое равно векторной сумме ускорений, которые появились бы при воздействии каждого из тел отдельно. Силы, оказывающие воздействие на тело и приложенные к его одной точке следует складывать в соответствии с правилом сложения векторов.

ОПРЕДЕЛЕНИЕ

Векторная сумма всех сил, действующих на тело одновременно, называется равнодействующей силой ():

Если на тело действуют несколько сил, то второй закон Ньютона записывается как:

Равнодействующая всех сил, действующих на тело, может быть равна нулю, в том случае, если происходит взаимная компенсация сил, приложенных к телу. В таком случае тело движется с постоянной скоростью или находится в покое.

При изображении сил, действующих на тело, на чертеже, в случае равноускоренного перемещения тела, равнодействующую силу, направленную по ускорению следует изображать длиннее, чем противоположно ей направленную силу (сумму сил). В случае равномерного движения (или покоя) дина векторов сил, направленных в противоположные стороны одинакова.

Для нахождения равнодействующей силы, следует изобразить на чертеже все силы, которые необходимо учитывать в задаче, действующие на тело. Складывать силы следует по правилам сложения векторов.

Примеры решения задач

ПРИМЕР 1

Задание Тело покоится на наклонной плоскости (рис.1), изобразите силы, которые действуют на тело, чему равна равнодействующая всех сил, приложенных к телу?

Решение Сделаем рисунок.

На тело, расположенное на наклонной плоскости действуют: сила тяжести (), сила нормальной реакции опоры () и сила трения покоя (по условию тело не движется) (). Равнодействующую всех сил действующих на тело () можно найти векторным суммированием:

Сложим сначала по правилу параллелограмма силы тяжести и силу реакции опоры, получим силу . Эта сила должна быть направлена вдоль наклонной плоскости по движению тела. По длине вектор должен быть равен вектору силы терния , так как тело по условию покоится. В соответствии со вторым законом Ньютона равнодействующая должна быть равна нулю:

Ответ Равнодействующая сила равна нулю.

ПРИМЕР 2

Задание Груз, подвешенный в воздухе на пружине, движется с постоянным ускорением, направленным вниз (рис.3), какие силы действуют на груз? Чему равна равнодействующая сил, приложенных к грузу? Куда будет направлена равнодействующая сила?

Решение Сделаем рисунок.

На груз, подвешенный, на пружине действуют: сила тяжести () со стороны Земли и сила упругости пружины () (со стороны пружины), при движении груза в воздухе, обычно силой трения груза о воздух пренебрегают. Равнодействующую сил, приложенных к грузу в нашей задаче, найдем как:

Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело (при этом если тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая); затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; на четвертом записать 2 закон Ньютона для всех тел.

Запомните: направление равнодействующей силы всегда совпадает по направлению с вектором ускорения тела.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.

Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.

Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Выполняя поворот, тело наклоняется в сторону по­ворота и образует угол a к вертикали:

На тело действуют сила тяжести, сила реакции опоры и сила трения, причем со стороны дороги на тело действует сила, которая в сумме с силой тяжести сообщает телу центростреми­тельное ускорение. По второму закону Ньютона:В проекциях на координатные оси:Значит,

Через неподвижный блок перекинута невесомая нерастяжимая нить, которая может скользить по блоку без трения. К нити привязаны грузы массамии

На оба груза действуют сила тяжести и сила натяжения нити. Равнодействующие этих сил сообщают телам ускорение а. По второму за­кону Ньютона для каждого тела: Выберем осии, связанные с направлением движения каждого из тел. В проекциях на оси уравнения для каждого из тел имеют вид:Сила давления на ось блоканаправлена вверх и равна сумме сил натяже­ния, которые действуют на плечи блока:

На горизонтальной плоскости на­ходятся тела с массамии, связанные невесомой нерастяжи­мой нитью. К первому телу при­ложили горизонтальную силуКоэффициент трения обоих тел о поверхность одинаков и равен.

На первое тело действуют сила тяжести, сила реакции опоры, сила тяги, сила натяжения нити и сила трения. Направления сил указаны на рисунке. По второму закону Ньютона:На второе тело действуют сила тяжести, сила реакции опоры, сила натяже­ния нити и сила трения. По второму закону Ньютона:Спроектируем уравнения (1) и (2) на оси:первая система вторая система Из второй системы уравнений:Тогда силы трения:
Первая система будет иметь вид: