По аналитической химии. Аналитическая химия как наука

Любой метод анализа использует определенный аналитический сигнал, который в данных условиях дают конкретные элементарные объекты (атомы, молекулы, ионы), из которых состоят исследуемые вещества.

Аналитический сигнал дает информацию как качественного, так и количественного характера. Например, если для анализа используются реакции осаждения, качественную информацию получают по появлению или отсутствию осадка. Количественную информацию получают по величине массы осадка. При испускании веществом света в определенных условиях качественную информацию получают по появлению сигнала (испускание света) при длине волны, соответствующей характерному цвету, а по интенсивности светового излучения получают количественную информацию.

По происхождению аналитического сигнала методы аналитической химии можно классифицировать на химические, физические и физико-химические.

В химических методах проводят химическую реакцию и измеряют либо массу полученного продукта – гравиметрические(весовые) методы, либо объем реагента, израсходованный на взаимодействие с веществом, – титриметрические,газоволюмометрические (объемные) методы.

Газоволюмометрия (газовый объёмный анализ) основана на избирательной абсорбции составных частей газовой смеси в сосудах, заполненных тем или иным поглотителем, c последующим измерением уменьшения объёма газа c помощью бюретки. Tак, диоксид углерода поглощают раствором гидроксида калия, кислород - раствором пирогаллола, монооксид углерода - аммиачным раствором хлорида меди. Газоволюмометрия относится к экспрессным методам анализа. Oна широко используется для определения карбонатов в г. п. и минералах.

Xимические методы aнализа широко используют для анализа руд, горных пород, минералов и других материалов при определении в них компонентов c содержанием от десятых долей до нескольких десятков процента. Xимические методы анализа характеризуются высокой точностью (погрешность анализа обычно составляет десятые доли процента). Однако эти методы постепенно вытесняются более экспрессными физико-химическими и физизическими методами анализа.

Физические методы анализа основаны на измерении какого-либо физического свойства веществ, являющегося функцией состава. Например, рефрактометрия основана на измерении относительных показателей преломления света. В активационном анализе измеряется активность изотопов и т. д. Часто при проведении анализа предварительно проводят химическую реакцию, и концентрацию полученного продукта определяют по физическим свойствам, например по интенсивности поглощения светового излучения цветным продуктом реакции. Такие методы анализа называют физико-химическими.

Физические методы анализа характеризуются высокой производительностью, низкими пределами обнаружения элементов, объективностью результатов анализа, высоким уровнем автоматизации. Физические методы анализа используют при анализе горных пород и минералов. Hапример, атомно-эмиссионным методом определяют вольфрам в гранитах и сланцах, сурьму, олово и свинец в горных породах и фосфатах; атомно-абсорбционным методом - магний и кремний в силикатах; рентгенофлуоресцентным - ванадий в ильмените, магнезите, глинозёме; масс-спектрометрическим - марганец в лунном реголите; нейтронно-активационным - железо, цинк, сурьму, серебро, кобальт, селен и скандий в нефти; методом изотопного разбавления - кобальт в силикатных породах.

Физические и физико-химические методы иногда называют инструментальными, т. к. в этих методах требуется применение специально приспособленных для проведения основных этапов анализа и регистрации его результатов инструментов (аппаратуры).

Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов.

Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества (кулонометрия, потенциометрия и т. д.), а также хроматография (например, газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей химических реакций (кинетические методы анализа), тепловых эффектов реакций (термометрическое титрование), а также на разделении ионов в магнитном поле (масс-спектрометрия).

Классификация методов качественного анализа.

Предмет и задачи аналитической химии.

Аналитической химией называют науку о методах качественного и количественного исследования состава веществ (или их смесей). Задачей аналитической химии является развитие теории химических и физико-химических методов анализа и операций в научных исследованиях.

Аналитическая химия состоит из двух основных разделов: качественный анализ состоит в “открытии “, т.е. обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество. Количественный анализ заключается в определении количественного содержания отдельных составных частей сложного вещества.

Практическое значение аналитической химии велико. С помощью методов хим. анализа открыты законы: постоянства состава, кратных отношений, определены атомные массы элементов, химические эквиваленты, установлены формулы многих соединений.

Аналитическая химия способствует развитию естественных наук - геохимии, геологии, минералогии, физики, биологии, технологических дисциплин, медицины. Химический анализ - основа современного химико-технологического контроля всех производств, в которых производится анализ сырья, продукции и отходов производства. По результатам анализа судят о течении технологического процесса и о качестве продукции. Химические и физико-химические методы анализа лежат в основе установления госстандарта на всю выпускаемую продукцию.

Велика роль аналитической химии в организации мониторинга окружающей среды. Это мониторинг загрязнения поверхностных вод, почв ТМ, пестицидами, нефтепродуктами, радионуклидами. Одной из задач мониторинга является создание критериев, устанавливающих пределы возможного экологического ущерба. Например ПДК - предельно-допустимая концентрация - это такая концентрация, при воздействии которой на организм человека, периодически или в течении всей жизни, прямо или косвенно через экологические системы, не возникает заболеваний или изменений состояния здоровья, обнаруживаемые современными методами сразу же или в отдаленные сроки жизни. Для каждого хим. вещества имеется свое значение ПДК.

Классификация методов качественного анализа.

Исследуя новое соединение, прежде всего определяют, из каких элементов (или ионов) оно состоит, а затем уже количественные отношения, в которых они находятся. Поэтому качественный анализ, как правило, предшествует количественному анализу.

Все аналитические методы основаны на получении и измерении аналитического сигнала, т.е. любого проявления химических или физических свойств вещества, которое можно использовать для установления качественного состава анализируемого объекта или для количественной оценки содержащихся в нем компонентов. Анализируемым объектом может быть индивидуальное соединение в любом агрегатном состоянии. смесь соединений, природный объект (почва, руда, минерал, воздух, вода), продукты промышленного производства и продукты питания. Перед анализом проводят отбор пробы, измельчение, просеивание, усреднение и т.д. Подготовленный для анализа объект называют образцом или пробой.

В зависимости от поставленной задачи выбирают метод. Аналитические методы качественного анализа по способу выполнения делятся на: 1) анализ “сухим” и 2) анализ “мокрым” путем.

Анализ “сухим” путем проводится с твердыми веществами. Он делится на пирохимический и метод растирания.

Пирохимический (греч. - огонь) вид анализа проводится нагреванием исследуемого образца в пламени газовой или спиртовой горелки, выполняется двумя путями: получение окрашенных “перлов” или окрашивание пламени горелки.

1.“Перлы” (франц. - жемчуг) образуются при растворении в расплаве солей NaNH 4 PO 4 ∙ 4 H 2 O, Na 2 B 4 O 7 ∙ 10 H 2 O - бура) или оксидов металлов. Наблюдая окраску полученных перлов “стекол” устанавливают присутствие тех или иных элементов в образце. Так, например, соединения хрома делают зеленую окраску перла, кобальта - синюю, марганца - фиолетово-аметистовую и т.д.

2. Окрашивание пламени - летучие соли многих металлов при внесении их в несветящуюся часть пламени окрашивают его в разные цвета, например, натрий - интенсивно желтый, калий - фиолетовый, барий - зеленый, кальций - красный и т.д. Эти виды анализа используются в предварительных испытаниях и в качестве “экспресс” - метода.

Анализ методом растирания. (1898г. Флавицкий). Исследуемый образец растирают в фарфоровой ступке с равным количеством твердого реагента. По окраске полученного соединения судят о наличии определяемого иона. Метод используется в предварительных испытаниях и проведения “экспресс” анализа в полевых условиях для анализа руд и минералов.

2.Анализ “мокрым” путем - это анализ образца, растворенного в каком - либо растворителе. В качестве растворителя чаще всего используют воду, кислоты или щелочи.

По способу проведения методы качественного анализа делятся на дробный и систематический. Метод дробного анализа - это определение ионов с помощью специфических реакций в любой последовательности. Применяется в агрохимических, заводских и пищевых лабораториях, когда состав исследуемого образца известен и требуется только проверить отсутствие примесей или в проведении предварительных испытаний. Систематический анализ - это анализ в строго определенной последовательности, в которой каждый ион обнаруживается только после того, как будут обнаружены и удалены мешающие определению ионы.

В зависимости от взятого количества вещества для анализа, а также от техники выполнения операций методы подразделяются на:

- макроанализ - проводится в сравнительно больших количествах вещества(1- 10 г). Анализ выполняется в водных растворов и в пробирках.

-микроанализ - исследует очень малые количества вещества (0,05 - 0,5 г). Выполняется либо на полоске бумаги, часовом стекле с каплей раствора (капельный анализ) или на предметном стекле в капле раствора получают кристаллы, по форме которых под микроскопом устанавливают вещество (микрокристаллоскопический).

Основные понятия аналитической химии.

Аналитические реакции - это реакции, сопровождающиеся хорошо заметным внешним эффектом:

1) выпадением или растворением осадка;

2) изменением окраски раствора;

3) выделение газа.

Кроме того, к аналитическим реакциям предъявляются еще два требования: необратимость и достаточная скорость реакции.

Вещества, под действием которых происходят аналитические реакции, называются реагентами или реактивами. Все хим. реагенты делятся на группы:



1) по химическому составу (карбонаты, гидроксиды, сульфиды и т.д.)

2) по степени очистки основного компонента.

Условия выполнения хим. анализа:

1. Среда реакции

2. Температура

3. Концентрация определяемого иона.

Среда. Кислая, щелочная, нейтральная.

Температура. Большинство хим. реакций выполняются при комнатных условиях “на холоду”, или иногда требуется охладить под краном. Многие реакции идут при нагревании.

Концентрация - это количество вещества, содержащееся в определенном весовом или объемном количестве раствора. Реакция и реактив, способный вызвать в заметной степени свойственный ему внешний эффект даже при ничтожно малой концентрации определяемого вещества, называются чувствительными .

Чувствительность аналитических реакций характеризуется:

1) предельным разбавлением;

2) предельной концентрацией;

3) минимальным объемом предельно разбавленного раствора;

4) пределом обнаружения (открываемым минимумом);

5) показателем чувствительности.

Предельное разбавление Vlim – максимальный объем раствора, в котором может быть (больше чем в 50 опытах из 100 опытов) обнаружен один грамм данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

Например, при реакции ионов меди с аммиаком в водном растворе

Cu 2+ + 4NH 3 = 2+ ¯ярко-синий комплекс

Предельное разбавление иона меди равно (Vlim = 2,5 · 10 5 мг/л), т.е. ионы меди можно открыть с помощью этой реакции в растворе, содержащем 1 г меди в 250 000 мл воды. В растворе, в котором содержится менее 1 г меди (II) в 250 000 мл воды, обнаружить эти катионы вышеприведенной реакцией невозможно.

Предельная концентрация Сlim (Cmin) – наименьшая концентрация, при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией. Выражается в г/мл.

Предельная концентрация и предельное разбавление связаны соотношением: Сlim = 1 / V lim

Например, ионы калия в водном растворе открывают с помощью гексанитрокобальтатом (III) натрия

2K + + Na 3 [ Co(NO 2) 6 ] ® NaK 2 [ Co(NO 2) 6 ] ¯ + 2Na +

Предельная концентрация ионов К + при этой аналитической реакции равна С lim = 10 -5 г/мл, т.е. ион калия нельзя открыть указанной реакцией, если его содержание составляет меньше 10 -5 г в 1 мл анализируемого раствора.

Минимальный объем предельно разбавленного раствора Vmin – наименьший объем анализируемого раствора, необходимый для обнаружения открываемого вещества данной аналитической реакцией. Выражается в мл.

Предел обнаружения (открываемый минимум) m – наименьшая масса определяемого вещества, однозначно открываемого данной ан. реакциейв минимальном объеме предельно разбавленного раствора. Выражается в мкг (1 мкг = 10 -6 г).

m = C lim · V min × 10 6 = V min × 10 6 / V lim

Показатель чувствительности аналитической реакции определяется

pС lim = - lg C lim = - lg(1/Vlim) = lg V lim

Ан. реакция тем чувствительнее, чем меньше ее открываемый минимум, минимальный объем предельно разбавленного раствора и чем больше предельное разбавление.

Величина предела обнаружения зависит от:

1. Концентрации исследуемого раствора и реагента.

2. Продолжительности протекания ан. реакции.

3. Способа наблюдения внешнего эффекта (визуально или с помощью прибора)

4. Соблюдения условий выполнения ан. Реакций (t, рН, количество реагента, его чистота)

5. Присутствии и удаления примесей, посторонних ионов

6. Индивидуальные особенности химика-аналитика (аккуратность, острота зрения, умение различать цвета).

Типы аналитических реакций (реактивов):

Специфические - реакции, позволяющие определять данный ион или вещества в присутствии любых других ионов или веществ.

Например: NH4 + + OH - = NH 3 ­ (запах) + H 2 O

Fe 3+ + CNS - = Fe(CNS) 3 ¯

кроваво-красный

Селективные - реакции позволяют избирательно открывать сразу несколько ионов с одинаковым внешним эффектом. Чем меньше ионов открывает данный реактив, тем выше его избирательность.

Например:

NH 4 + + Na 3 = NH 4 Na

K + + Na 3 = NaК 2

Групповые реакции (реагенты) позволяют обнаруживать целую группу ионов или каких-то соединений.

Например: катионы II группы - групповой реагент (NH4)2CO3

СaCI 2 + (NH 4) 2 CO 3 = CaCO 3 + 2 NH 4 CI

BaCI 2 + (NH 4) 2 CO 3 = BaCO 3 + 2 NH 4 CI

SrCI 2 + (NH 4) 2 CO 3 = SrCO 3 + 2 NH 4 CI

В зависимости от поставленной задачи выделяют 3 группы методов аналитической химии:

  • 1) методы обнаружения позволяют установить, какие элементы или вещества (аналиты) присутствуют в пробе. Их используют для проведения качественного анализа;
  • 2) методы определения позволяют установить количественное содержание аналитов в пробе и используются для проведения количественного анализа;
  • 3) методы разделения позволяют выделить аналит и отделить мешающие компоненты. Их используют при проведении качественного и количественного анализа. Существуют различные методы количественного анализа: химические, физико-химические, физические и др.

Химические методы основаны на использовании химических реакций (нейтрализации, окисления-восстановления, комплексообразования и осаждения), в которые вступает анализируемое вещество. Качественным аналитическим сигналом при этом является наглядный внешний эффект реакции - изменение окраски раствора, образование или растворение осадка, выделение газообразного продукта. При количественных определениях, в качестве аналитического сигнала используют объем выделившегося газообразного продукта, массу образовавшегося осадка и объем раствора реагента с точно известной концентрацией, затраченный на взаимодействие с определяемым веществом.

Физические методы не используют химические реакции, а измеряют какие-либо физические свойства (оптические, электрические, магнитные, тепловые и др.) анализируемого вещества, которые являются функцией его состава.

Физико-химические методы используют изменение физических свойств анализируемой системы в результате протекания химических реакций. К физико-химическим относят также хроматографические методы анализа, основанные на процессах сорбции-десорбции вещества на твердом или жидком сорбенте в динамических условиях, и электрохимические методы (потенциометрия, вольтамперометрия, кондуктометрия).

Физические и физико-химические методы часто объединяют под общим названием инструментальные методы анализа, так как для проведения анализа применяют аналитические приборы и аппараты, регистрирующие физические свойства или их изменение. При проведении количественного анализа измеряют аналитический сигнал - физическую величину, связанную с количественным составом пробы. Если количественный анализ проводится с использованием химических методов, то в основе определения всегда лежит химическая реакция.

Различают 3 группы методов количественного анализа:

  • - Газовый анализ
  • - Титриметрический анализ
  • - Гравиметрический анализ

Наибольшее значение среди химических методов количественного анализа имеют гравиметрические и титриметрические методы, которые называют классическими методами анализа. Эти методы являются стандартными для оценки правильности определения. Основная область их применения - прецизионное определение больших и средних количеств веществ.

Классические методы анализа широко используются на предприятиях химической промышленности для контроля хода технологического процесса, качества сырья и готовой продукции, промышленных отходов. На основе этих методов осуществляется и фармацевтический анализ - определение качества лекарств и лекарственных средств, которые производятся химико-фармацевтическими предприятиями.

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Кафедра химии

Утверждаю Зав. кафедрой професор

И.М.Паписов "___" ____________ 2007 г.

А.А. ЛИТМАНОВИЧ, О.Е. ЛИТМАНОВИЧ

АНАЛИТИЧЕСКАЯ ХИМИЯ Часть 1. Качественный химический анализ

Методическое пособие

для студентов II курса специальности “Инженерная защита окружающей среды”

МОСКВА 2007

Литманович А.А., Литманович О.Е. Аналитическая химия: Ч. 1: Качественный химический анализ: Методическое пособие / МАДИ

(ГТУ) – М., 2007. 32 с.

Рассмотрены основные химические законы качественного анализа неорганических соединений и их применимость для определения состава объектов окружающей среды. Пособие предназначено для студентов специальности “Инженерная защита окружающей среды”.

© Московский автомобильно-дорожный институт (государственный технический университет), 2008

ГЛАВА 1. ПРЕДМЕТ И ЗАДАЧИ АНАЛИТИЧЕСКОЙ ХИМИИ. АНАЛИТИЧЕСКИЕ РЕАКЦИИ

1.1. Предмет и задачи аналитической химии

Аналитическая химия – наука о методах исследования состава веществ. С помощью этих методов устанавливают, какие химические элементы, в какой форме и в каком количестве содержатся в изучаемом объекте. В аналитической химии выделяют два больших раздела – качественный и количественный анализ. Поставленные задачи аналитическая химия решает с помощью химических и инструментальных методов (физических, физикохимических).

В химических методах анализа определяемый элемент переводят в соединение, обладающее такими свойствами, с помощью которых можно установить присутствие этого элемента или измерить его количество. Одним из основных способов измерения количества образующегося соединения является определение массы вещества путем взвешивания на аналитических весах – гравиметрический метод анализа. Методы количественного химического анализа и инструментальные методы анализа будут рассмотрены в части 2 методического пособия по аналитической химии.

Актуальным направлением развития современной аналитической химии является разработка методов анализа объектов окружающей среды, сточных и сбросовых вод, газовых выбросов промышленных предприятий и автомобильного транспорта. Аналитический контроль позволяет обнаруживать превышение содержания особо вредных компонентов в сбросах и выбросах, способствует выявлению источников загрязнения окружающей среды.

Химический анализ основан на фундаментальных законах общей и неорганической химии, с которыми Вы уже знакомы. Теоретические основы химического анализа включают: знание свойств водных растворов; кислотно-основных равновесий в водных

растворах; окислительно-восстановительных равновесий и свойств веществ; закономерностей реакций комплексообразования; условий образования и растворения твердой фазы (осадков) .

1.2. Аналитические реакции. Условия и способы их проведения

Качественный химический анализ проводят с помощью аналитических реакций , сопровождающихся заметными внешними изменениями: например, выделением газа, изменением окраски, образованием или растворением осадка, в ряде случаев – появлением специфического запаха.

Основные требования к аналитическим реакциям:

1) Высокая чувствительность , характеризуемая величиной предела обнаружения (Сmin ) – наименьшей концентрацией компонента в пробе раствора, при которой данная методика анализа позволяет уверенно обнаруживать этот компонент. Абсолютное минимальное значение массы вещества, которая может быть обнаружена путем аналитических реакций, составляет от 50 до 0.001 мкг (1 мкг = 10–6 г).

2) Избирательность – характеризуется способностью реагента вступать в реакцию как можно с меньшим числом компонентов (элементов). На практике обнаружение ионов стараются проводить в таких условиях, при которых избирательная реакция становитсяспецифической , т.е. позволяет обнаружить данный ион в присутствии других ионов. В качествепримеров специфических реакций (которых немного) можно привести следующие.

а) Взаимодействие солей аммония с избытком щелочи при нагревании:

NH4 Cl + NaOH → NH3 + NaCl + H2 O . (1)

Выделяющийся аммиак легко распознать по характерному запаху (“нашатырный спирт”) или по изменению окраски влажной индикаторной бумажки, поднесенной к горлышку пробирки. Реакция

позволяет обнаружить присутствие ионов аммония NH4 + в анализируемом растворе.

б) Взаимодействие солей двухвалентного железа с гексацианоферратом (III) калия K3 с образованием осадка синего цвета (турнбуллева синь, или берлинская лазурь). Реакция (хорошо Вам знакомая по теме ”Коррозия металлов” в курсе

Эти реакции позволяют обнаружить ионы Fe2+ и Fe3+ в анализируемом растворе.

Специфические реакции удобны тем, что определять присутствие неизвестных ионов можно дробным методом – в отдельных пробах анализируемого раствора, содержащего и другие ионы.

3) Быстрота протекания реакции (высокая скорость ) ипростота выполнения.

Высокая скорость реакции обеспечивает достижение термодинамического равновесия в системе за короткое время (практически со скоростью смешения компнентов при реакциях в растворе).

При выполнении аналитических реакций необходимо вспомнить, от чего зависит смещение равновесия реакции в нужном направлении и ее протекание до большой глубины превращения . Для реакций, протекающих в водных растворах электролитов, на смещение термодинамического равновесия влияют концентрация одноименных ионов, рН среды, температура . В частности, от температуры зависит величина констант равновесия – константы

диссоциации для слабых электролитов и произведения растворимости (ПР) для малорастворимых солей, оснований

Указанные факторы определяют глубину протекания реакции, выход продукта и точность определения анализируемого вещества (либо – саму возможность обнаружения определенного иона при малом количестве и концентрации анализируемого вещества).

Чувствительность некоторых реакций повышается в водноорганическом растворе, например, при добавлении в водный раствор ацетона или этанола. Например, в водно-этанольном растворе растворимость CaSO4 значительно ниже, чем в водном (значение ПР меньше), что позволяет однозначно обнаружить присутствие ионов Ca2+ в анализируемом растворе при гораздо меньших его концентрациях, чем в водном растворе, а также – наиболее полно освободить раствор от этих ионов (осаждением с помощью H2 SO4 ) для продолжения анализа раствора.

При качественном химическом анализе разрабатывается рациональная последовательность в разделении и обнаружении ионов – систематический ход (схема) анализа. При этом ионы выделяют из смеси группами, основываясь на их одинаковом отношении к действию определенных групповых реагентов.

Используется одна порция анализируемого раствора, из которой последовательно выделяют в виде осадков и растворов группы ионов, в которых затем обнаруживают отдельные ионы. Применение групповых реагентов позволяет разложить сложную задачу качественного анализа на ряд более простых. Отношение ионов к действию определенных

групповых реагентов положено в основу аналитической классификации ионов .

1.3. Предварительный анализ водного раствора, содержащего смесь солей, по цвету, запаху, значению рН

Наличие окраски прозрачного раствора, предложенного для анализа, может указывать на присутствие одного или сразу нескольких ионов (табл. 1). Интенсивность окраски зависит от концентрации иона в пробе, а сама окраска может изменяться, если

катионы металлов образуют более устойчивые комплексные ионы, чем комплексные катионы с молекулами H2 O в качестве лигандов, для которых и указана окраска раствора в табл. 1 .

Таблица 1

Цвет раствора

Возможные катионы

Возможные

Бирюзовый

Cu2+

Cr3+

Ni2+

MnO4 2-

Fe3+ (из-за гидролиза)

CrO4 2- , Cr2 O7 2-

Co2+

MnO4 -

Измерение рН предложенного раствора (если раствор приготовлен в воде, а не в растворе щелочи или кислоты) также

дает дополнительную

информацию о

возможном составе

Таблица 2

Собствен-

Возможные

Возможные

ный рН вод-

ного раство-

Гидролиз

Na+ , K+ , Ba2+ ,

SO3 2- , S2- , CO3 2- ,

образованной

Ca2+

CH3 COO-

металлы s-

(соответствующие

основанием

электронного

кислоты – слабые

слабой кислотой

семейства)

электролиты)

Гидролиз

NH4 +

Cl-, SO4 2- , NO3 - , Br-

образованной

(соответствующие

практически

кислотой

металлов

электролиты)

основанием

Гидролиз

Al3+ , Fe3+

основания

Водные растворы некоторых солей могут иметь специфические запахи в зависимости от рН раствора из-за образования неустойчивых (разлагающихся) или летучих соединений.Добавив к пробе раствора растворы NaOH или

сильной кислоты (HCl, H2 SO4 ), можно аккуратно понюхать раствор(табл. 3).

Таблица 3

рН пробы раствора

Соответствующий ион

после добавления

в растворе

Нашатырный спирт

NH4 +

(запах аммиака)

неприятный

SO3 2-

запах (SO2 )

“Уксус”

(уксусная

CH3 COO-

кислота CH3 COOH)

(сероводород H2 S)

Причиной появления запаха (см. табл. 3) является хорошо известное свойство реакций в растворах электролитов – вытеснение слабых кислот или оснований (часто это водные растворы газообразных веществ) из их солей сильными кислотами и основаниями соответственно .

ГЛАВА 2. КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ КАТИОНОВ

2.1. Кислотно-основной метод классификации катионов по аналитическим группам

В основе наиболее простого и наименее “вредного” кислотнощелочного (основного) метода качественного анализа лежит отношение катионов к кислотам и основаниям. Классификация катионов проводится по следующим признакам:

а) растворимость хлоридов, сульфатов и гидроксидов; б) основной или амфотерный характер гидроксидов;

в) способность к образованию устойчивых комплексных соединений с аммиаком (NH3 ) – аммиакатов (т.е. амминокомплексов) .

Все катионы подразделяются на шесть аналитических групп с помощью 4-х реагентов: 2М раствор HCl, 1М раствор H2 SO4 , 2М раствор NaOH и концентрированный водный раствор аммиака

NH4 OH (15-17%-ный) (табл. 4).

Таблица 4 Классификация катионов по аналитическим группам

Групповой

Результат

действия группового

реагента

Ag+ , Pb2+

Осадок: AgCl, PbCl2

1M H2 SO4

(Pb2+ ), Ca2+ ,

Осадок (белый): BaSO4 ,

Ba2+

(PbSO4 ), CaSO4

Al3+ , Cr3+ , Zn2+

Раствор: [Аl(OH)4 ]– ,

(избыток)

– , 2–

NH4 OH (конц.)

Fe2+ , Fe3+ , Mg2+ ,

Осадок: Fe(OH)2 ,

Mn2+

Fe(OH)3 , Mg(OH)2 ,

Mn(OH)2

NH4 OH (конц.)

Cu2+ , Ni2+ , Co2+

Раствор (окрашен):

2+ ,синий

2+ ,голубой

2+ , желтый (на

воздухе синеет из-за

окисления до Co3+ )

Отсутствует

NH4 + , Na+ , K+

Очевидно, что приведенный перечень катионов далеко не полный и включает наиболее часто встречающиеся на практике катионы в анализируемых образцах. Кроме того, существуют и другие принципы классификации по аналитическим группам .

2.2. Внутригрупповой анализ катионов и аналитические реакции их обнаружения

2.2.1. Первая группа (Ag+ , Pb2+ )

Исследуемый раствор, содержащий катионы Ag+ , Pb2+

↓ + 2М раствор HCl + C 2 H5 OH (для понижения растворимости PbCl2 )

Если ПК > ПР, образуются белые осадки смеси хлоридов,

которые отделяют от раствора (раствор не анализируется):

Ag+ + Cl– ↔ AgCl↓ и Pb2+ + 2Cl– ↔ PbCl2 ↓ (3)

Очевидно, что при малых концентрациях осаждаемых катионов концентрация анионов Cl– должна быть относительно большой

↓ К части осадка + H2 O (дистиллированная) + кипячение

В раствор переходят частично

В осадке – весь AgCl и

ионы Pb 2+ (смещение равновесия

частично PbCl2

(3) влево, т.к. ПК < ПР для PbCl2 )

↓ + NH4 OH (конц.)

Обнаружение в растворе,

1. Растворение AgCl из-за

отделенном от осадка:

комплексообразования:

1. С реагентом КI (после

AgCl↓+ 2NH4 OH(изб.) →

охлаждения):

→+ +Cl– +2H2 O

Pb2+ + 2I– → PbI2 ↓ (золотистые

кристаллы) (4)

↓+ 2М раствор HNO3

↓ до рН<3

2. Осаждение AgCl из-за

распада комплексного иона:

Cl– + 2HNO3

→AgCl↓+ 2NH4 + + 2NO3

↓ К 2-й части осадка смесихлоридов + 30%-ный

I. Химия и медицина

1. Предмет, цели и задачи аналитической химии. Краткий исторический очерк развития аналитической химии. Место аналитической химии среди естественных наук и в системе медицинского образования.

Аналитическая химия – наука о методах определения состава веществ. Предмет ее - решение общих проблем теории химического анализа, совершенствование существующих и разработка новых, более быстрых и точных методов анализа (т.е теория и практика хим. анализа). Задача - развитие теории химических и физико-химических методов анализа, процессов и операций в научном исследовании, совершенствование старых методов анализа, разработка экспрессных и дистанционных м.а, разработка методов ультра- и микроанализа.

В зависимости от объекта исследования аналитическую химию делят на неорганический и органический анализ . Аналитическая химия относится к прикладным наукам. Практическое значение ее весьма разнообразно. С помощью методов химического анализа были открыты некоторые законы - закон постоянства состава, закон кратных отношений, определены атомные массы элементов,

химические эквиваленты, установлены химические формулы многих соединений и т. д.

Аналитическая химия в значительной степени способствует развитию естественных наук: геохимии, геологии, минералогии, физики, биологии, агрохимии, металлургии, химической технологии, медицины и др.

Предмет качественного анализа - развитие теоретических основ, усовершенствование существующих и разработка новых, более совершенных методов определения элементарного состава веществ. Задача качественного анализа - определение “качества” веществ или обнаружение отдельных элементов или ионов, входящих в состав исследуемого соединения.

Качественные аналитические реакции по способу их выполнения делятся на реакции “мокрым” и “сухим” путем . Наибольшее значение имеют реакции “мокрым” путем. Для проведения их исследуемое вещество должно быть предварительно растворено.

В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными для наблюдателя внешними эффектами: изменением окраски раствора; выпадением или растворением осадка; выделением газов, обладающих характерным запахом или цветом.

Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями “открытия ”, так как с их помощью обнаруживаются присутствующие в растворе ионы.

Широко используются также реакции идентификации , с помощью которых проверяется правильность “открытия” того или иного иона. Наконец, применяются реакции осаждения, с помощью которых обычно отделяется одна группа ионов от другой или один ион от других ионов.

В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро-, микро-, полумикро- и ультрамикроанализ и др.

II. Качественный анализ

2. Основные понятия аналитической химии. Типы аналитических реакций и реагентов. Требования, предъявляемые к анализу, чувствительности, селективности определения состава веществ.

Аналитическая реакция - хим. реакция, используемая для разделения, обнаружения и количественного определения элементов, ионов, молекул. Она должна сопровождаться аналитическим эффектом (выпадением осадка, выделением газа, изменением окраски, запаха).

По типу химических реакций:

Общие – аналитические сигналы одинаковы для многих ионов. Реагент – общий. Пример: осаждение гидроксидов, карбонатов, сульфидов и т.д.

Групповые – аналитические сигналы характерны для определенной группы ионов, обладающих близкими свойствами. Реагент – групповой. Пример: осаждение ионов Ag + , Pb 2+ реагентом – соляной кислотой с образованием белых о садков AgCl, PbCl 2

Общие и групповые реакции применяют для выделения и разделения ионов сложной смеси.

Селективные – аналитические сигналы одинаковы для ограниченного количества ионов. Реагент – селективный. Пример: при действии реагента NH 4 SCN на смесь катионов только два катиона образуют окрашенные комплексные со единения: кроваво-красное 3-

и синее 2-

Специфические – аналитический сигнал характерен только для одного иона. Реагент – специфический. Таких реакций крайне мало.

По типу аналитического сигнала:

Цветные

Осадительные

Газовыделительные

Микрокристаллические

По функции:

Реакции обнаружения (идентификации)

Реакции разделения (отделения) для удаления мешающих ионов путем осаждения, экстракции или возгонки.

По технике выполнения:

Пробирочные – выполнятся в пробирках.

Капельные выполняются:

На фильтровальной бумаге,

На часовом или предметном стекле.

При этом на пластинку или на бумагу наносят 1-2 капли анализируемого раствора и 1-2 капли реагента, дающего характерное окрашивание или образование кристаллов. При выполнении реакций на фильтровальной бумаге используются адсорбционные свойства бумаги. Капля жидкости, нанесенная на бумагу, быстро рассасывается по капиллярам, а окрашенное соединение адсорбируется на небольшой площади листа. При наличии в растворе нескольких веществ скорость движения их может быть различной, что дает распределение ионов в виде концентрических зон. В зависимости от произведения растворимости осадка – или в зависимости константы устойчивости комплексных соединений: чем больше их значения, тем ближе к центру или в центре определенная зона.

Капельный метод разработал советский ученый-химик Н.А. Тананаев.

Микрокристаллические реакции основаны на образовании химических соединений, имеющих характерную форму, цвет и светопреломляющую способность кристаллов. Они выполняются на предметных стеклах. Для этого на чистое стекло наносят капиллярной пипеткой 1-2 капли анализируемого раствора и рядом 1-2 капли реагента, осторожно соединяют их стеклянной палочкой, не перемешивая. Затем с текло помещают на предметный столик микроскопа и рассматривают осадок, образовавшийся на месте

соприкосновения капель.

Для правильного использования в аналитике реакций следует учитывать чувствительность реакции . Она определяется наименьшим количеством искомого вещества, которое может быть обнаружено данным реактивом в капле раствора (0,01-0,03 мл). Чувствительность выражается рядом величин:

    Открываемый минимум - наименьшее количество вещества, содержащееся в исследуемом растворе и открываемое данным реактивом при определенных условиях выполнения реакции.

    Минимальная (предельная) концентрация показывает при какой наименьшей концентрации раствора данная реакция позволяет еще однозначно открывать обнаруживаемое вещество в небольшой порции раствора.

    Предельное разбавление - максимальное количество разбавителя, при котором еще определяется вещество.

Вывод: аналитическая реакция тем чувствительней, чем меньше открываемый минимум, меньше минимальная концентрация, но чем больше предельное разбавление.