Понятие матрицы типы матриц. Матрицы

Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц.

Действия над матрицами

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
а) 3А+4В
б) АВ-ВА
в) (А-В) -1
необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
Единичной матрицей называется квадратная матрица вида


Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

Определим основные операции над матрицами .

Сложение матриц

Определение . Суммой двух матриц и одинакового размера называется матрица тех же размеров, элементы которой находятся по формуле . Обозначается C = A+B.

Пример 6 . .
Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

Вычитание матриц

Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C, что A+ C = B.

Умножение матриц

Определение . Произведением матрицы на число α называется матрица , получающаяся из A умножением всех ее элементов на α, .
Определение . Пусть даны две матрицы и , причем число столбцов A равно числу строк B. Произведением A на B называется матрица , элементы которой находятся по формуле .
Обозначается C = A·B.
Схематически операцию умножения матриц можно изобразить так:

а правило вычисления элемента в произведении:

Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
Найдем B·A (умножение возможно).

Пример 8 . Дана матрица . Найти 3A 2 – 2A.
Решение.

.
; .
.
Отметим следующий любопытный факт.
Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.

Опр . Прямоугольная таблица, состоящая из т строк и п столбцов действительных чисел называется матрицей размера т×п . Матрицы обозначают заглавными латинскими буквами: А, В,…, а массив чисел выделяют круглыми или квадратными скобками.

Числа, входящие в таблицу, называются элементами матрицы и обозначаются малыми латинскими буквами с двойным индексом , гдеi – номер строки, j – номер столбца, на пресечении которых расположен элемент. В общем виде матрица записывается так:

Две матрицы считаются равными , если равны их соответствующие элементы.

Если число строк матрицы т равно числу ее столбцов п , то матрица называется квадратной (в противном случае – прямоугольной).


Матрица размера
называется матрицей-строкой. Матрица размера

называется матрицей-столбцом.

Элементы матрицы, имеющие равные индексы (
и т.д.), образуютглавную диагональ матрицы. Другая диагональ называется побочной.



Квадратная матрица называется диагональной , если все ее элементы, расположенные вне главной диагонали, равны нулю.

Диагональная матрица, у которой диагональные элементы равны единице, называется единичной матрицей и имеет стандартное обозначение Е:


Если все элементы матрицы, расположенные выше (или ниже) главной диагонали равны нулю, говорят, что матрица имеет треугольный вид:


§2. Операции над матрицами

1. Транспонирование матрицы – преобразование, при котором строки матрицы записывают в виде столбцов при сохранении их порядка. Для квадратной матрицы это преобразование эквивалентно симметричному отображению относительно главной диагонали:

.


2. Матрицы одинаковой размерности можно суммировать (вычитать). Суммой (разностью) матриц называется матрица той же размерности, каждый элемент которой равен сумме (разности) соответствующих элементов исходных матриц:



3. Любую матрицу можно умножать на число. Произведением матрицы на число называется матрица того же порядка, каждый элемент которой равен произведению соответствующего элемента исходной матрицы на это число:

.

4. Если число столбцов одной матрицы равно числу строк другой, то можно выполнить умножение первой матрицы на вторую. Произведением таких матриц называется матрица, каждый элемент которой равен сумме попарных произведений элементов соответствующей строки первой матрицы и элементов соответствующего столбца второй матрицы.

Следствие . Возведение матрицы в степень к >1 есть произведение матрицы А к раз. Определено только для квадратных матриц.

Пример .

Свойства операций над матрицами.

  1. (А+В)+С=А+(В+С);

    к(А+В)=кА+кВ;

    А(В+С)=АВ+АС;

    (А+В)С=АС+ВС;

    к(АВ)=(кА)В=А(кВ);

    А(ВС)=(АВ)С;

  2. (кА) Т =кА Т;

    (А+В) Т =А Т +В Т;

    (АВ) Т =В Т А Т;

Перечисленные выше свойства аналогичны свойствам операций над числами. Есть и специфические свойства матриц. К ним относится, например, отличительное свойство умножения матриц. Если произведение АВ существует, то произведение ВА

Может не существовать

Может отличаться от АВ.

Пример . Предприятие выпускает продукцию двух видов А и В и использует при этом сырье трех типов S 1 , S 2 , и S 3 . Нормы расхода сырья заданы матрицей N=
, гдеn ij – количество сырья j , расходуемого на производство единицы продукции i . План выпуска продукции задан матрицей С=(100 200), а стоимость единицы каждого вида сырья – матрицей . Определить затраты сырья, необходимые для планового выпуска продукции и общую стоимость сырья.

Решение. Затраты сырья определим как произведение матриц С и N:

Общую стоимость сырья вычислим как произведение S и Р.

Точки в пространстве, произведение Rv даёт другой вектор, который определяет положение точки после вращения. Если v - вектор-строка , такое же преобразование можно получить, используя vR T , где R T - транспонированная к R матрица.

Энциклопедичный YouTube

    1 / 5

    C# - Консоль - Олимпиада - Квадратная спираль

    Матрица: определение и основные понятия

    Где брать силы и вдохновения Подзарядка 4 квадратной матрицы

    Сумма и разность матриц, умножение матрицы на число

    Транспонована матриця / Транспонированная матрица

    Субтитры

Главная диагональ

Элементы a ii (i = 1, ..., n ) образуют главную диагональ квадратной матрицы. Эти элементы лежат на воображаемой прямой, проходящей из левого верхнего угла в правый нижний угол матрицы. Например, главная диагональ 4х4 матрицы на рисунке содержит элементы a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10.

Диагональ квадратной матрицы, проходящая через нижний левый и верхний правый углы, называется побочной .

Специальные виды

Название Пример с n = 3
Диагональная матрица [ a 11 0 0 0 a 22 0 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}}}
Нижняя треугольная матрица [ a 11 0 0 a 21 a 22 0 a 31 a 32 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\end{bmatrix}}}
Верхняя треугольная матрица [ a 11 a 12 a 13 0 a 22 a 23 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\end{bmatrix}}}

Диагональные и треугольные матрицы

Если все элементы вне главной диагонали нулевые, A называется диагональной . Если все элементы над (под) главной диагональю нулевые, A называется нижней (верхней) треугольной матрицей .

Единичная матрица

Q (x ) = x T Ax

принимает только положительные значения (соответственно, отрицательные значения или и те, и другие). Если квадратичная форма принимает только неотрицательные (соответственно, только неположительные) значения, симметричная матрица называется положительно полуопределённой (соответственно, отрицательно полуопределённой). Матрица будет неопределённой, если она ни положительно, ни отрицательно полуопределена.

Симметричная матрица положительно определена тогда и только тогда, когда все её собственные значения положительны. Таблица справа показывает два возможных случая для матриц 2×2.

Если использовать два различных вектора, получим билинейную форму , связанную с A :

B A (x , y ) = x T Ay .

Ортогональная матрица

Ортогональная матрица - это квадратная матрица с вещественными элементами, столбцы и строки которой являются ортогональными единичными векторами (т. е. ортонормальными). Можно также определить ортогональную матрицу как матрицу, обратная которой равна транспонированной:

A T = A − 1 , {\displaystyle A^{\mathrm {T} }=A^{-1},}

откуда вытекает

A T A = A A T = E {\displaystyle A^{T}A=AA^{T}=E} ,

Ортогональная матрица A всегда обратима (A −1 = A T), унитарна (A −1 = A *), и нормальна (A *A = AA *). Определитель любой ортонормальной матрицы равен либо +1, либо −1. В качестве линейного отображения любая ортонормальная матрица с определителем +1 является простым поворотом , в то время как любая любая ортонормальная матрица с определителем −1 является либо простым отражением , либо композицией отражения и поворота.

Операции

След

Определитель det(A ) или |A | квадратной матрицы A - это число, определяющее некоторые свойства матрицы. Матрица обратима тогда и только тогда , когда её определитель ненулевой.

Определение Матрицей – называется таблица чисел содержащая определенное количество строк и столбцов

Элементами матрицы являются числа вида a ij , где i- номер строки j- номер столбца

Пример 1 i = 2 j = 3

Обозначение: А=

Виды матриц:

1. Если число строк не равно числу столбцов , то матрица называется прямоугольной:

2. Если число строк равно числу столбцов , то матрица называется квадратной:

Число строк или столбцов квадратной матрицы называется ее порядком . В примере n = 2

Рассмотрим квадратную матрицу порядка n:

Диагональ, содержащая элементы a 11 , a 22 ……., a nn , называетсяглавной, а диагональ, содержащая элементы а 12 , а 2 n -1 , …….a n 1 – вспомогательная.

Матрица, у которой отличны от нуля только элементы, находящиеся на главной диагонали, называется диагональной :

Пример 4 n = 3

3. Если у диагональной матрицы элементы равны 1, то матрица называется единичной и обозначается буквой Е:

Пример 6 n = 3

4. Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается буквой О

Пример 7

5. Треугольной матрицей n-ого порядка называется квадратная матрица, все элементы которой, расположенные ниже главной диагонали, равны нулю:

Пример 8 n = 3

Действия над матрицами:

Суммой матрицы А и В называется такая матрица С, элементы которой равны сумме соответствующих элементов матриц А и В.

Складывать можно только матрицы, имеющие одинаковые число строк и столбцов.

Произведением матрицы А на число k называется такая матрица kA, каждый элемент которой равен ka ij

Пример10

Умножение матрицы на число сводится к умножению на это число всех элементов матрицы.

Произведение матриц Что бы умножить матрицу на матрицу, необходимо выбрать первую строку первой матрицы и умножить на соответствующие элементы первого столбца второй матрицы, результат сложить. Этот результат расположить в результатирующей матрице в 1-ой строке и 10ом столбце. Аналогично выполняем действия со всеми остальными элементами: 1-ую строку на второй столбец, на 3-ий и т.д., затем со следующими строками.

Пример 11

Умножение матрицы А на матрицу В возможно только в том случае, если число столбцов первой матрицы равно числу строе второй матрицы.

- произведение существует;

- произведение не существует

Примеры 12 последнюю строчку во II матрицы умножать не с чем, т.е. произведение не существует

Транспонирование матрицы называется операция замены элементов строки на элементы столбца:

Пример13

Возведением в степень называется последовательное перемножение матрицы саму на себя.



Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение