Примеры решенных задач по физике на тему "движение заряда в магнитном поле по спирали". Движение электронов в электрическом и магнитном полях

Пример первый: пусть сначала имеется постоянное поле в направлении . Ему соответствуют два стационарных состояния с энергиями . Добавим небольшое поле в направлении . Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщепляются. Пусть, далее, -компонента поля начнет меняться во времени, скажем, как . Тогда уравнения станут такими, как для молекулы.аммиака и колеблющемся электрическом пале (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от -состояния к -состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, . Это приводит к квантовомеханической теории явлений магнитного резонанса, описанной нами в гл. 35 (вып. 7).

Можно еще сделать мазер, в котором используется система со спином . Прибор Штерна - Герлаха создает пучок частиц, поляризованных, скажем, в направлении , и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнитным моментом, вызовут переходы, которые будут снабжать полость энергией.

Рассмотрим теперь второй пример. Пусть у нас имеется магнитное поле , направление которого характеризуется полярным углом и азимутальным углом (фиг. 8.10). Допустим еще, что имеется электрон, спин которого направлен по полю. Чему равны амплитуды и для этого электрона? Иными словами, обозначая состояние электрона , мы хотим написать

,

где и равны

а и обозначают то же самое, что раньше обозначалось и (по отношению к выбранной нами оси ).

Ответ на этот вопрос также содержится в наших общих уравнениях для систем с двумя состояниями. Во-первых, мы знаем, что раз спин электрона параллелен , то электрон находится в стационарном состоянии с энергией . Поэтому и , и должны изменяться как [см. уравнение (7.18)]; и их коэффициенты и даются формулой (8.5):

Вдобавок и должны быть нормированы так, чтобы было . Величины и мы можем взять из (8.22), используя равенства

Тогда мы имеем

(8.25).

Кстати, скобка во втором уравнении есть просто , так что проще писать

(8.28)

Подставляя эти матричные элементы в (8.24) и сокращая на , находим

Зная это отношение и зная условие нормировки, можно найти и , и . Сделать это нетрудно, но мы сократим нуть, прибегнув к одному трюку. Известно, что и Значит, (8.27) совпадает с

. (8.28)

Один из ответов, следовательно, таков:

. (8.29)

Он удовлетворяет и уравнению (8.28), и условию

Вы знаете, что умножение и на произвольный фазовый множитель ничего не меняет. Обычно формуле (8.29) предпочитают более симметричную запись, умножая на . Принято писать так:

. (8.30)

Это и есть ответ на наш вопрос. Числа и - это амплитуды того, что электрон будет замечен спином вверх или вниз (но отношению к оси ), если известно, что его спин направлен вдоль оси . [Амплитуды и равны просто и , умноженным на .]

Заметьте теперь занятную пещь. Напряженность магнитного поля нигде в (S.30) не появляется. Тот же результат, разумеется, получится в пределе, если поле устремить к нулю. Это означает, что мы дали общий ответ на вопрос, как представлять частицу, спин которой направлен вдоль произвольной оси. Амплитуды (8.30) - это проекционные амплитуды для частиц со спином , подобные проекционным амплитудам для частиц со спином 1, приведенным в гл. 3 [уравнения (3.38)]. Теперь мы сможем находить для фильтрованных пучков частиц со спином амплитуды проникновения через тот или иной фильтр Штерна - Герлаха.

Пусть представляет состояние со спином, направленным по оси вверх, а - состояние со спином вниз. Если представляет состояние со спином, направленным вверх по оси , образующей с осью углы и , то в обозначениях гл. 3 мы имеем

Эти результаты эквивалентны тому, что мы нашли из чисто геометрических соображений в гл. 4 [уравнение (4.36)], (Если вы в свое время решили пропустить гл. 4, то вот перед вами один из ее существенных результатов.)

Напоследок вернемся еще раз к тому примеру, о котором уже не раз говорилось. Рассмотрим такую задачу. "Сперва имеется электрон с определенным образом направленным спином, затем на 25 минут включается магнитное поле в направлении , а затем выключается. Каким окажется конечное состояние? Опять представим состояние в виде линейной комбинации . Но в нашей задаче состояния с определенной энергией являются одновременно нашими базисными состояниями и . Значит, и меняются только по фазе. Мы знаем, что

Мы сказали, что вначале у спина электрона было определенное направление. Это означает, что вначале и были двумя числами, определяемыми формулами (8.30). Переждав секунд, новые и мы получим из прежних умножением соответственно на / и . Что это будут за состояния? Узнать это легко, ведь это все равно, что измеить угол , вычтя из него , и не трогать угол .

Это значит, что к концу интервала времени состояние будет представлять электрон, выстроенный в направлении, отличающемся от первоначального только поворотом вокруг оси на угол . Раз этот угол пропорционален , то можно говорить, что направление спина прецессирует вокруг оси с угловой скоростью . Этот результат мы уже получали раньше несколько раз, но не так полно и строго. Теперь мы получили полное и точное квантовомеханическое описание прецессии атомных магнитов.. И неважно, какая физика там была первоначально - молекула ли аммиака или что другое, - вы можете перевести ее на язык соответствующей задачи об электроне. Стало быть, если мы в состоянии решить в общем случае задачу об электроне, мы уже решили все задачи о двух состояниях., и изменяйте скорость вращения так, чтобы она все время была пропорциональна напряженности (фиг. 8.11). Если все время это делать, вы остановитесь на какой-то конечной ориентации спиновой оси, и амплитуды и получатся просто как ее проекции [при помощи (8.30)] на вашу систему координат.

Фигура 8.11. Направление спина электрона и изменяющемся магнитном поле прецессирует с частотой вокруг оси, параллельной

Вы видите, что задача эта чисто геометрическая: надо заметить, где закончились все ваши вращения. Хотя сразу видно, что для этого требуется, но эту геометрическую задачу (отыскание окончательного итога вращений с переменным вектором угловой скорости) нелегко в общем случае решить явно. Во всяком случае, мы в принципе видим общее решение любой задачи для двух состояний. В следующей главе мы глубже исследуем математическую технику обращения с частицами спина и, следовательно, обращения с системами, обладающими двумя состояниями, в общем случае.

Цель работы. Определение удельного заряда электрона по известной траектории пучка электронов в электрическом и переменноммагнитном полях.

Приборы и принадлежности: э кспериментальная установка марки «PHYWE» фирмы HYWE Systems GmbH & Co. (Германия) в составе: электронно-лучевая трубка; катушки Гельмгольца (1 пара); источник питания универсальный (2 шт.); цифровой мультиметр (2 шт.); разноцветные соединительные шнуры.

Введение

Удельным зарядом элементарной частицы называют отношение заряда частицы к её массе. Эта характеристика широко применяется для идентификации частиц, так как позволяет отличать друг от друга разные частицы, имеющие одинаковые заряды (например, электроны от отрицательно заряженных мюонов, пионов и др.).

Удельный заряд электронаотносится к фундаментальным физическим постоянным, таким как заряд электронае , скорость света с , постоянная Планка h и др. Его теоретическое значение составляет величину = (1,75896 ± 0,00002)∙10 11 Кл∙кг -1 .

Многочисленные экспериментальные методы определения удельного заряда частиц основаны на исследованиях особенностей их движения в магнитном поле. Дополнительные возможности представляет использование конфигурации магнитного и электрического полей и варьирование их параметров. В данной работе определяется удельный заряд электрона на экспериментальной установке марки «PHYWE» немецкого производства. В ней для изучения траекторий движения электронов в магнитном поле реализован метод, основанный на сочетании возможностей варьирования параметров однородных магнитного и электрического полей при их взаимно перпендикулярной конфигурации. Данное методическое пособие разработано с использованием документации, поставленной в комплекте с установкой.

Магнитное поле. Опыты показывают, что магнитное поледействует на движущиеся в нём заряженные частицы. Силовой характеристикой, определяющей подобное его действие, является магнитная индукция – векторная величина В . Магнитное поле изображают с помощью силовых линий магнитной индукции, касательные к которым в каждой точке совпадают с направлением вектора B . При однородном магнитном поле вектор B постоянен по величине и направлению в любой точке поля. Сила, действующая на заряд q , движущийся со скоростью V в магнитном поле, была определена немецким физиком Г. Лоренцем (сила Лоренца). Она выражается формулой

F л = q [ V B ] или F л = |q |VB sin α (1)

где α угол, образованный вектором скорости V движущейся частицы и вектором индукции магнитного поля В .

На неподвижный электрический заряд магнитное поле не действует. В этом его существенное отличие от поля электрического.

Направление силы Лоренца определяется с помощью правила «левой руки». Если ладонь левой руки расположить так, чтобы в неё входил вектор B , а четыре вытянутых пальца направить вдоль

направления движения положительных зарядов (q >0), совпадающие с направлением тока I (), то отогнутый большой палец

Рис.1

покажет направление силы, действующей на положительный заряд (q >0) (рис. 1). В случае отрицательных зарядов (q < 0) направления тока I и скорости V движения противоположны. Направление силы Лоренца определяется по направлению тока. Таким образом, сила Лоренца перпендикулярна вектору скорости, поэтому модуль скорости не будет меняться под действием этой силы. Но при постоянной скорости, как следует из формулы (1), остаётся постоянным и значение силы Лоренца. Из механики известно, что постоянная сила, перпендикулярная скорости, вызывает движение по окружности, то есть является центростремительной. При отсутствии других сил, согласно второму закону Ньютона, она сообщает заряду центростремительное или нормальное ускорение . Траектория движения заряда в однородном магнитном поле приVB представляет собой окружность (рис.2), радиус которой r определяется из условия

где α – угол между векторами V и B .

В случае α = 90 0 , sinα = 1 из формулы (2) радиус круговой траектории заряда определяется формулой

Работа, совершаемая над движущейся зарядом в магнитном поле постоянной силой Лоренца, равна

ΔА = F л. Δ r

или ΔА = F л. Δr cosβ , (4)

где β – угол между направлением векторов силы F л. и направлением вектора перемещения Δ r .

Так как всегда выполняется условие F л Δ r , β = 90 0 и cos β = 0, то работа, совершаемая силой Лоренца, как следует из (4), всегда равна нулю. Следовательно, абсолютное значение скорости заряда и его кинетическая энергия при движении в магнитном поле остаются постоянными.

Период вращения (время одного полного оборота), равен

Подставив в (5) вместо радиуса r его выражение из (3), получим, что кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: период обращения не зависит от энергии частицы, зависит только от индукции магнитного поля и величины, обратной удельному заряду:

Если магнитное поле однородно, но начальная скорость заряженной частицы V направлена под углом α к силовым линиям В , то движение можно представить как суперпозицию двух движений: равномерного прямолинейного в направлении, параллельном магнитному полю со скоростью V // = V cosα и равномерного

вращения под действием силы Лоренца в плоскости, перпендикулярной магнитному полю cо скоростью V = V sinα .

В результате траектория движения частицы будет представлять собой винтовую линию (рис.3).

Шаг винтовой линии равен расстоянию, пройденному зарядом вдоль поля со скоростью V // за время, равное периоду вращения

h = V Т cos , (7)

Подставив это выражение для Т в (7), получим

. (8)

Ось спирали параллельна силовым линиям магнитного поля B .

Электрическое поле. На точечный заряд q , помещённый в электрическое поле, характеризующееся вектором напряжённости E , действует сила

F = q E , (9)

Направление силы F совпадает с направлением вектора E , если заряд положительный, и противоположно E в случае отрицательного заряда. В однородном электрическом поле вектор напряжённости в любой точке поля постоянен по величине и направлению. Если движение происходит только вдоль силовых линий однородного электрического поля, оно является равноускоренным прямолинейным.

По второму закону Ньютона F = m a уравнение движения заряда в электрическом поле выражается формулой

q E = (10)

Предположим, что точечный отрицательный заряд, двигающийся первоначально вдоль оси Х со скоростью V , попадает в однородное электрическое поле между пластинами плоского конденсатора, как показано на рис. 4.

Движение заряда вдоль оси X является равномерным, его кинематическое уравнение x = x 0 + Vt (x 0 начальная координата, t время),V = const , x 0 = 0. Время пролёта зарядом конденсатора с длиной пластин равно .

Движение вдоль оси Y определяется электрическим полем внутри конденсатора. Если зазор между пластинами мал по сравнению с их длиной, краевыми эффектами можно пренебречь и электрическое поле в пространстве между пластинами считатьоднородным (Е y = const). Движение заряда будет равноускоренным V y = V 0 y + at . У скорение определяется с формулой (10). Выполнив интегрирование (10), получим , где С постояннаяинтегрирования. При начальном условии (t = 0) V 0 y = 0 получим C = 0. .

Траектория и характер движения заряженной частицы в однородном электрическом поле плоского конденсатора подобны аналогичным характеристикам движения в гравитационном поле брошенного горизонтально тела. Отклонение заряженной частицы вдоль оси Y равно . С учётом характера действующей силы оно зависит отсогласно формуле.

При перемещении заряда в электрическом поле между точками, имеющими разность потенциалов U , электрическим полем совершается работа, вследствие чего заряд приобретает кинетическую энергию. В соответствии с законом сохранения энергии

Если на движущийся электрический заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряжённостью E , то результирующая сила F , определяющая его движение, равна векторной сумме силы, действующей со стороны электрического поля и силы Лоренца

F эм = q E + q [V B ]. (11)

Это выражение называется формулой Лоренца.

В данной лабораторной работе исследуется движение электронов в магнитном и электрическом полях. Все соотношения, рассмотренные выше для произвольного заряда, справедливы и для электрона.

Считаем, что начальная скорость электрона равняется нулю. Попадая в электрическое поле, заряд ускоряется в нём, и, пройдя разность потенциалов U , приобретает некоторую скорость V . Её можно определить из закона сохранения энергии. В случае нерелятивистских скоростей (V << скорости света c ) имеющего вид

где е = –1,6∙10 -19 Кл – заряд электрона, m e = 9,1∙10 -31 кг – его масса.

Из (12) скорость электрона

Подставляя её в (3), получим формулу для нахождения радиуса окружности, по которой движется электрон в магнитном поле:

Таким образом, зная разность потенциалов U , ускоряющую электроны при их движении в электрическом поле до нерелятивистских скоростей, индукцию однородного магнитного поля B , в котором эти электроны движутся, описывая круговую траекторию, и, экспериментально определяя радиус указанной круговой траектории r , можно вычислить удельный заряд электрона по формуле

Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости. Под заряженной частицей мы будем подразумевать электрон. Заряд его обозначим q =- q э и массу m . Заряд примем равным q э =1,601 . 10 -19 Кл, при скорости движения, значительно меньшей скорости света, масса m =0,91 . 10 -27 г. Допустим, что электрон движется в достаточно высоком вакууме, так что при движении электрон не сталкивается с другими частицами. На электрон, движущийся со скоростью в магнитном поле индукции, действует сила Лоренца

Учтем, что заряд электрона отрицателен, и скорость его направлена по оси y , а индукция по оси- x . Сила направлена перпендикулярно скорости и является центробежной силой. Она изменяет направление скорости, не влияя на числовое значение (см. рис.1)

Электрон будет двигаться по окружности радиусом r с угловой частотой, которую называют циклотронной частотой. Центробежное ускорение равно силе f , деленной на массу

Период равен

Следовательно

Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям

Рассмотрим два случая:

а) Движение в равномерном поле. На рис 2. обозначен угол между скоростью электрона и индукцией. Разложим на, направленную по и численно равную, и на, направленную перпендикулярно и численно равную. Так как, то наличие составляющей скорости не вызывает силы воздействия на электрон. Движение со скоростью приводит к вращению электрона вокруг линии подобно тому, как это было рассмотрено в первом пункте. В целом электрон будет двигаться по спирали. Осевой линией которой является линия магнитной индукции. Поступательное и одновременно вращательное движение называют дрейфовым движением. Радиус спирали шаг спирали

б) Движение в неравномерном поле. Если магнитное поле неравномерно, например сгущается (рис.2 в.), то при движении по спирали электрон будет попадать в точки поля, где индукция В увеличивается. Но чем больше индукция В, тем при прочих равных условиях меньше радиус спирали r . Дрейф электрона будет происходить в этом случае по спирали со всем уменьшающимся радиусом. Если бы

магнитные силовые линии образовывали расходящийся пучок, то электрон при своем движении попадал бы в точки поля со все уменьшающейся индукцией и радиус спирали возрастал бы

Фокусировка пучка электронов по¬стоянным во времени магнитным полем (магнитная линза)

Из катода электронного прибора (рис. 3) выходит расходящийся пучок электронов. Со скоростью электроны входят в неравномерное магнитное поле узкой цилиндрической катушки с током

Разложим скорость электрона в произвольной точке т на две составляю¬щие: и

Первая направлена противоположно, а вторая -перпендикулярно. Возникшая ситуация повторяет ситуацию, рассмотренную в пункте 2. Электрон нач¬нет двигаться по спирали, осью которой является. В результате электронный пучок фокусируется в точке b .

Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа

Электрон, пройдя расстояние от катода К до узкого отверстия в аноде А (рис. 4, а), под действием ускоряющего напря¬жения U ак увеличивает свою кинетическую энергию на величину работы сил по¬ля

Скорость с которой электрон будет двигаться после выхода в аноде из отверстия 0, найдем из соотношения

При дальнейшем прямолинейном движении по оси х электрон попадает в равномерное электрическое поле, напряженностью Е между отклоняющими пластинами 1 и 2 (находятся в плоскостях, параллельных плоскости z ох).

Напряженность Е направлена вдоль оси у. Пока электрон движется между от¬клоняющимися пластинами, на него действует постоянная сила Fy = - q э E . направленная но оси -у. Под действием этой силы электрон движется вниз рав¬ноускоренно, сохраняя постоянную скорость вдоль оси х. В результате в про¬странстве между отклоняющими пластинами электрон движется по параболе. Когда он выйдет из поля пластин 1-2. в плоскости уох он будет двигаться по касательной к пара¬боле. Далее он попадает в поле пластин 3-4 , которые создают развертку во времени. Напряже¬ние U 31 между пластинами 3-4 и напряженность поля между ними E 1 линейно нарастают во времени (рис. 4, б). Электрон получает отклонение в направлении оси z , что и даст развертку во времени

Фокусировка пучка электронов по
стоянным во времени электриче¬ским полем (электрическая линза)

Фокусировка основана на том что, проходя через участок неравномерного электрического поля, электрон отклоняется в сто¬рону эквипотенциали с большим значением потенциала (рис. 5, а). Электриче¬ская линза образована катодом, испускающим электроны, анодом, куда пучок электронов приходит сфокусированным, и фокусирующей диафрагмой, пред¬ставляющей собой пластинку с круглым отверстием в центре (рис. 5, б). Диа¬фрагма имеет отрицательный потенциал по отношению к окружающим ее точ¬кам пространства, вследствие этого эквинотенциали электрического поля как бы выпучиваются через

диафрагму по направлению к катоду. Электроны, проходя через отверстие в диафрагме и отклоняясь в сторону, фокусируются на аноде

Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях

Пусть электрон с зарядом q = - q э, и массой т с начальной скоростью оказался при t = 0 в начале, координат (рис. 6, а) в магнитном и электрическом полях. Магнитная индукция направлена по оси т. е. B x = B . Напряжен¬ность электрического поля направлена по оси, т. е. . Дви¬жение электрона будет происходить в плоскости zoy со скоростью

Уравнение движения или

Следовательно, ;

В соответствии с формулой (2) заменим q э B / m на циклотронную частоту  ц. Тогда

Продифференцируем (4) по t и в правую часть уравнения подставим (5)

Решим уравнение классическим методом: v y = v y пр + v y св:

Составим два уравнения для определения постоянных интегрирования

Так как при t =0 v y = v , то. При t =0 v z =0. Поэтому или. Отсюда и

Таким образом,

Пути, пройденные электроном по осям у и z:

На рис. 6, б, в, г изображены три характерных случая движения при различных значениях v 0 . На рис. 6, б трохоида при v 0 =0, максимальное от¬клонение по оси z равно.

трохоида (рис. 6, в) с максимальным отклонением

Когда магнитное и электрическое поля мало отличаются от равномерных, траектории движения электронов близки к трохоидам

Движение заряженных частиц в кольцевых ускорителях

Циклотрон – это две полые камеры в виде полуцилиндров из проводящего неферромагнитного материала. Эти камеры находятся в сильном равномерном маг¬нитном поле индукции, направленном сверху вниз (рис. 7). Камеры по¬мещают в вакуумированный сосуд и присоединяют к ис¬точнику напряжения U m cos (t). При t =0, когда напряжение между камерами имеет максимальное значение, а потенциал левой камеры положителен по отношению к правой, в пространство между камерами вводят положительный заряд q . На него будет действовать сила. Заряд начнет двигаться слева направо и с начальной скоростью пойдет и правую камеру. Внутри камеры напряжен¬ность электрического поля равна нулю. Поэтому, пока он находится там, на не¬го не действует сила, но действует сила, обусловленная магнитным полем. Под действием этой силы положительный заряд, двигающийся со скоростью v , начинает

движение по окружности радиусом. Время, в течение которого он совершит пол-оборота, .

Если частоту приложенного между камерами напря¬жения взять равной, то к тому времени, когда заряд выйдет из правой камеры, он окажется под воздействием электрического поля, на¬правленного справа налево. Под действием этого поля заряд увеличивает свою скорость и входит в левую камеру, где совершает следующий полуоборот, но уже большего радиуса, так как имеет боль¬шую скорость. После k полуоборотов заряженная частица приобретает такую скорость и энергию, ка¬кую она приобрела бы, если в постоянном электриче¬ском поле пролетела между электродами, раз¬ность потенциалов между которыми kU m Вывод заряда из циклотрона осуществляется с помощью постоянного электрического поля, созда¬ваемого между одной из камер (на рис. 7 пра¬вой) и вспомогательным электродом. С увеличением скорости, она становится соизмеримой со скоростью света. Масса частицы во много раз увеличивается. Возрастает и время t 1 , прохождения полуоборота. Поэтому одновременно с увеличением скорости частицы необходимо уменьшать либо частоту источника напряжения U m cos (t) (фазотрон), либо величину индукции магнитного поля (синхротрон), либо частоту и индукцию (синхрофазотро

Во всех электронных и ионных приборах электронные потоки в вакууме или газе, находящемся под тем или иным давлением, подвергаются воздействию электрического поля. Взаимодействие движущихся электронов с электрическим.полем является основным процессом в электронных и ионных приборах. Рассмотрим движение электрона в электрическом поле.

Рис.1 — Движение электрона в ускоряющем (а), тормозящем (б) и поперечном (в) электрических полях

На рис.1 а, изображено электрическое поле в вакууме между двумя плоскими электродами. Они могут представлять собой катод и анод диода или любые два соседних электрода многоэлектродного прибора. Представим себе, что из электрода, имеющего более низкий потенциал, например из жатода, вылетает электрон с некоторой начальной скоростью Vo. Поле действует на электрон с силой F и ускоряет его движение к электроду, имеющему более высокий положительный потенциал, например к аноду. Иначе говоря, электрон притягивается к электроду с более высоким положительным потенциалом. Поэтому поле в данном случае называют ускоряющим. Двигаясь ускоренно, электрон приобретает наибольшую скорость в конце своего пути, т. е. при ударе об электрод, к которому он летит. В момент удара кинетическая энергия электрона также будет наибольшей. Таким образом, при движении электрона в ускоряющем поле происходит увеличение кинетической энергии электрона за счет того, что поле совершает работу по перемещению электрона. Электрон всегда отнимает энергию от ускоряющего поля.

Скорость, приобретаемая электроном при движении в ускоряющем поле, зависит исключительно от пройденной разности потенциалов U и определяется формулой

Удобно скорости электронов выражать условно в вольтах. Например, скорость электрона 10 в, означает такую скорость, которую электрон приобретает в результате движения в ускоряющем поле с разностью потенциалов 10 в. Из приведенной формулы легко найти, что при U - 100 в скорость V ~ 6 000 км/сек. При таких больших скоростях время пролета электрона в пространстве между электродами получается весьма малым, порядка 10 в минус 8 — 10 в минус 10 сек.

Рассмотрим теперь движение электрона, у которого начальная скорость Vo направлена против силы F, действующей на электрон со стороны поля (рис.1 б). В этом случае электрон вылетает с некоторой начальной скоростью из электрода с более высоким положительным потенциалом. Та,к как сила F направлена навстречу скорости Vo, то получается торможение электрона и поле называют тормозящим. Следовательно, одно и то же поле для одних электронов является ускоряющим, а для других- тормозящим, в зависимости от направления начальной скорости электрона.

Кинетическая энергия электронов, движущихся в тормозящем поле, уменьшается, так как работа совершается не силами поля, а самим электроном, который.преодолевает сопротивление сил поля. Энергия, теряемая электроном, переходит к полю. Таким образом, в тормозящем поле электрон всегда отдает энергию полю.

Если начальную скорость электрона выражать в вольтах (Uo), то уменьшение скорости равно той разности потенциалов U, которую проходит электрон в тормозящем поле. Когда начальная скорость электрона больше, чем разность потенциалов между электродами (Uo> U), то электрон пройдет все расстояние между электродами и попадет на электрод с более низким потенциалом. Если же Uo < U, то, пройдя разность потенциалов, равную Uq, электрон полностью потеряет свою энергию, скорость его станет равна нулю, он на-момент остановится и начнет ускоренно двигаться обратно (рис.1 б).

Если электрон влетает с некоторой начальной скоростью Vo под прямым углом к направлению силовых линий поля (рис.1 в), то поле действует на электрон с силой F, направленной в сторону более высокого положительного потенциала. Поэтому электрон совершает одновременно два взаимно-перпендикулярных движения: равномерное движение по инерции со скоростью vQ и равномерно-ускоренное движение в ваправлении действия силы F. Как известно из механики, результирующее движение электрона должно происходить по параболе, причем электрон отклоняется в сторону более положительного электрода. Когда электрон выйдет за пределы поля (рис.1 в), то дальше он будет двигаться,по инерции прямолинейно равномерно.

Из рассмотренных законов движения электронов видно, что электрическое поле всегда воздействует на кинетическую энергию и скорость электрона, изменяя, их в ту или другую сторону. Таким образом, между электроном и электрическим полем всегда имеется энергетическое взаимодействие, т. е. обмен энергией. Кроме того, если начальная скорость электрона направлена не вдоль силовых линий, а под некоторым углом к ним, то электрическое поле искривляет траекторию электрона, превращая ее из прямой линии в параболу.
Рассмотрим теперь движение электрона в магнитном поле.

Движущийся электрон представляет собой элементарный электрический ток и испытывает со стороны магнитного поля такое же действие, как и проводник с током. Из электротехники известно, что на прямолинейный проводник с током, находящийся в магнитном поле, действует механическая сила под прямым углом к магнитным силовым линиям и к проводнику. Ее направление изменяется на обратное, если изменить направление тока или направление магнитного поля. Эта сила пропорциональна напряженности поля, величине тока и длине проводника, а также зависит от угла между проводником и направлением поля.

Она будет наибольшей, если проводник расположен перпендикулярно силовым линиям; если же проводник расположен вдоль линий поля, то сила равна нулю.

Рис.2 — Движение электрона в поперечном магнитном поле.

Если электрон в магнитном поле неподвижен или движется вдоль силовых линий, то на него магнитное поле вообще не действует. На рис.2 показано, что происходит с электроном, который влетает в равномерное магнитное поле, созданное между полюсами магнита, с начальной скоростью Vo перпендикулярно к направлению поля. При отсутствии поля электрон двигался бы по инерции прямолинейно.и равномерно (штриховая линия); при наличии поля на него будет действовать сила F, направленная под прямым углом к магнитному полю и к скорости v0. Под действием этой силы электрон искривляет свей путь и двигается по дуге окружности. Его линейная скорость Vo и энергия при этом остаются неизменными, так как сила F все время действует перпендикулярно к скорости Vo. Таким образом, магнитное поле в отличие от электрического поля не изменяет энергию электрона, а лишь закручивает его.

Рассмотрим движение электрона в однородном магнитном поле. Если неоднородность поля незначительна, или если нет необходимости в получении точных количественных оценок, то для изучения движения в неоднородном поле также можно пользоваться более простыми законами, полученными для однородного поля.

Пусть электрон влетает в однородное магнитное поле с начальной скоростью V 0 , направленной перпендикулярно магнитным силовым линиям, рис. 5. В этом случае на электрон действует сила Лоренца F, которая перпендикулярна вектору V 0 и вектору магнитной индукции В, а численно равна:

При V 0 =0 сила F также равна нулю (на неподвижный электрон магнитное поле не действует). Сила F искривляет траекторию электрона в дугу окружности. Так как сила F действует под прямым углом к скорости V 0 , она не совершает работы. Энергия электрона и его скорость не изменяются. Изменяется лишь направление движения.


Направление движения электрона определяется следующему мнемоническому правилу: поворот электрона совпадает с вращательным движением винта, который ввинчивается в направлении магнитных силовых линий. Это правило часто называют правилом буравчика.

Известно, что движение тела по окружности с постоянной скоростью происходит под действием направленной к центру (центростремительной) силы. В нашем случае в качестве центростремительной выступает сила Лоренца F. Из механики известно, что центростремительная сила может быть рассчитана по формуле:

где r – радиус окружности вращения электрона. Приравняв центростремительную силу, получаемую из последнего выражения к выражению для силы Лоренца, получим:

.

Откуда найдем радиус:

Чем больше скорость электрона, тем больше и радиус окружности, описываемой им в магнитном поле. Выйдя за пределы магнитного поля, электрон летит равномерно и прямолинейно по инерции. Если же радиус окружности мал, то электрон может описывать в магнитном поле замкнутые окружности.

Рассмотрим случай, когда электрон влетает в магнитное поле под любым углом, рис. 6. Выберем координатную плоскость так, чтобы вектор начальной скорости электрона V 0 лежал в этой плоскости и чтобы ось Х совпадала по направлению с вектором В. Разложим V 0 на составляющие V x и V y . Движение электрона со скоростью V x эквивалентно току вдоль силовых линий. На такой ток магнитное поле не действует. Следовательно скорость V x не испытывает никаких изменений. Если бы электрон имел только эту скорость, он бы двигался прямолинейно и равномерно. Влияние поля на скорость V y такое же, как и в первом случае, отображенном на рис. 6. имея только скорость V y электрон двигался бы по окружности в плоскости, перпендикулярной магнитным силовым линиям.




Результирующее движение электрона происходит по винтовой линии (по спирали). В зависимости о значений B, V x и V y , эта спираль более или менее растянута. Радиус спирали легко определить по последней формуле, подставив в нее скорость V y .