Радиоактивные металлы

Радиация, радиоактивность и радиоизлучение - понятия, которые даже звучат достаточно опасно. В этой статье вы узнаете, почему некоторые вещества радиоактивные, и что это значит. Почему все так боятся радиации и насколько она опасна? Где мы можем встретить радиоактивные вещества и чем нам это грозит?

Понятие радиоактивности

Радиоактивностью называю «умение» атомов некоторых изотопов расщепляться и создавать этим излучения. Термин «радиоактивность» появился не сразу. Изначально такое излучение называли лучами Беккереля, в честь ученого, открывшего его в работе с изотопом урана. Уже теперь мы называем этот процесс термином «радиоактивное излучение».

В этом достаточно сложном процессе изначальный атом превращается в атом совсем другого химического элемента. За счет выбрасывания альфа- или бета-частиц, массовое число атома изменяется и, соответственно, это перемещает его по таблице Д. И. Менделеева. Стоит заметить, что массовое число изменяется, но сама масса остается практически такой же.

Опираясь на данную информацию, можем немного перефразировать определение понятия. Итак, радиоактивность - это также способность неустойчивых ядер атомов самостоятельно превращаться в другие, более стабильные и устойчивые ядра.

Вещества - что это такое?

Перед тем как говорить о том, что такое вещества радиоактивные, давайте вообще определим, что называется веществом. Итак, в первую очередь, это разновидность материи. Логичным есть и тот факт, что эта материя состоит из частиц, и в нашем случае это чаще всего электроны, протоны и нейтроны. Здесь уже можно говорить об атомах, которые состоят из протонов и нейтронов. Ну а из атомов получаются молекулы, ионы, кристаллы и так далее.

Понятие химического вещества основывается на этих же принципах. Если в материи невозможно выделить ядро, то ее нельзя причислить к химическим веществам.

О радиоактивных веществах

Как уже говорилось выше, чтобы проявлять радиоактивность, атом должен самопроизвольно распадаться и превращаться в атом совсем другого химического элемента. Если все атомы вещества нестабильны до такой степени, чтобы распасться таким образом, значит перед вами радиоактивное вещество. Более техническим языком определение прозвучало бы так: вещества радиоактивные, если они содержат радионуклиды, причем в высокой концентрации.

Где в таблице Д. И. Менделеева находятся радиоактивные вещества?

Довольно простой и легкий способ узнать, относиться ли вещество к радиоактивным, это посмотреть в таблицу Д. И. Менделеева. Все, что находится после элемента свинец - это радиоактивные элементы, а также еще прометий и технеций. Важно помнить, какие вещества радиоактивные, ведь это может спасти вам жизнь.

Существует также ряд элементов, которые имеют хотя бы один радиоактивный изотоп в своих природных смесях. Вот их неполный список, где указаны одни из самых распространенных элементов:

  • Калий.
  • Кальций.
  • Ванадий.
  • Германий.
  • Селен.
  • Рубидий.
  • Цирконий.
  • Молибден.
  • Кадмий.
  • Индий.

К радиоактивным веществам относятся те, которые содержат любые радиоактивные изотопы.

Виды радиоактивного излучения

Радиоактивное излучение бывает нескольких типов, о которых сейчас и пойдет речь. Уже упоминалось альфа- и бета-излучение, но это не весь список.

Альфа-излучение - это самое слабое излучение, которое представляет опасность в том случае, если частицы попадают непосредственно в тело человека. Такое излучение реализуется тяжелыми частицами, и именно поэтому легко останавливается даже листом бумаги. По этой же причини альфа-лучи не пролетают больше 5 см.

Бета-излучение более сильное, чем предыдущее. Это излучение электронами, которые намного легче альфа-частиц, поэтому могут проникать на несколько сантиметров в кожу человека.

Гамма-излучение реализуется фотонами, которые достаточно легко проникают еще дальше к внутренним органам человека.

Самое мощное по проникновению излучение - это нейтронное. От него спрятаться достаточно сложно, но в природе его, по сути, и не существует, разве что в непосредственной близости к ядерным реакторам.

Воздействие радиации на человека

Радиоактивно опасные вещества часто могут быть смертельными для человека. К тому же радиационное облучение имеет необратимый эффект. Если вы подверглись облучению, значит, вы обречены. В зависимости от масштабов повреждения, человек погибает в течение нескольких часов или на протяжении многих месяцев.

Вместе с этим нужно сказать, что люди непрерывно подвергаются радиоактивному излучению. Слава Богу, оно достаточно слабое, чтобы иметь летальный исход. Например, посмотрев футбольный матч по телевиденью, вы получаете 1 микрорад радиации. До 0,2 рад в год - это вообще естественный радиационный фон нашей планеты. 3 дар - ваша порция радиации при рентгене зубов. Ну а облучение свыше 100 рад уже является потенциально опасным.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество - это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Ученные, которые изучали радиоактивность

Вещества радиоактивные долгое время не считались опасными, и потому из свободно изучали. К сожалению, печальные смерти научили нас тому, что с такими веществами нужна осторожность и повышенный уровень безопасности.

Одним их первых, как уже упоминалось, был Антуан Беккерель. Это великий французский физик, которому и принадлежит слава первооткрывателя радиоактивности. За свои заслуги он удостоился членства в Лондонском королевском обществе. Из-за своего вклада и эту сферу он скончался достаточно молодым, в возрасте 55 лет. Но его труд помнят по сей день. В его честь были названа сама единица радиоактивности, а также кратеры на Луне и Марсе.

Не менее великим человеком была Мария Склодовская-Кюри, которая работала с радиоактивными веществами вместе со своим мужем Пьером Кюри. Мария также была француженкой, хоть и с польскими корнями. Кроме физики она занималась преподаванием и даже активной общественной деятельностью. Мария Кюри - первая женщина лауреат Нобелевской премии сразу в двух дисциплинах: физика и химия. Открытие таких радиоактивных элементов, как Радий и Полоний, - это заслуга Марии и Пьера Кюри.

Заключение

Как мы видим, радиоактивность - достаточно сложный процесс, который не всегда остается подконтрольным человеку. Это один из тех случаев, когда люди могут оказаться абсолютно бессильными перед лицом опасности. Именно поэтому важно помнить, что действительно опасные вещи могут быть внешне очень обманчивыми.

Узнать вещество радиоактивное или нет, чаще всего можно уже попав под его воздействие. Поэтому будьте осторожны и внимательны. Радиоактивные реакции во многом нам помогают, но также не стоит забывать, что это практически не подконтрольная нам сила.

К тому же стоит помнить вклад великих ученных в изучение радиоактивности. Они передали нам невероятно много полезных знаний, которые теперь спасают жизни, обеспечивают целые страны энергией и помогаю лечить страшные заболевания. Радиоактивные химические вещества - это опасность и благословение для человечества.

Все известные радиоактивные элементы следует разделить на 2 группы (таблица 2.1): естественные и искусственные (техногенные) .

Среди естественных радиоактивных элементов выделяются долгоживущие (U, Th, K-40, Rb-87 и др.), короткоживущие продукты распада долгоживущих изотопов (радий, радон и т.д.) и нуклиды, постоянно образующиеся в природной среде за счет ядерных реакций (C-14, H-3, Be-7 и др.).

Искусственные радионуклиды могут быть подразделены на:

- осколочные (продукт деления ядер урана-235 под воздействием тепловых нейтронов по схеме):

90 Sr, 134 Cs, 137 Cs, 140 La, 131 I, 129 I, 99 Tc, 106 Ru, 141 Ce

- трансурановые радиоактивные элементы

- продукты активации – за счет взаимодействия нейтронов, гамма - квантов и т.д. с веществом:

56 Fe, 22 Na, 60 Co, 65 Zn, 32 P

8 Предельно допустимые дозы облучения на организм человека. Каковы основные тенденции в изменении этих нормативов?

Предельно допустимая доза (ПДД) ионизирующего излучения - гигиенический норматив, регламентирующий наибольшее допустимое значение индивидуальной эквивалентной дозы во всем теле человека или в отдельных органах, которое не вызовет в состоянии здоровья лиц, работающих с источниками ионизированного излучения, неблагоприятных изменений. Применяется в области радиационной безопасности, устанавливается законодательно. В Российской Федерации законодательным документом являются "Нормы радиационной безопасности". ПДД зависит от облучения всего тела, тех или иных групп т. н. критических органов и составляет от 5 до 30 бэр (50-300 мЗв) в год.

По отношению к облучению население делится на 3 категории.

Категория А облучаемых лиц или персонал (профессиональные работники) - лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений.
Категория Б облучаемых лиц или ограниченная часть населения - лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующих излучений.

Для категории А вводятся предельно допустимые дозы -наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. Для категории Б определяется предел дозы.

Устанавливается три группы критических органов:

1 группа - все тело, гонады и красный костный мозг.

2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам.

3 группа - кожный покров, костная ткань, кисти, предплечья, голени и стопы.

Помимо основных дозовых пределов для оценки влияния излучения используют производные нормативы и контрольные уровни. Нормативы рассчитаны с учетом непревышения дозовых пределов ПДД (предельно допустимая доза) и ПД (предел дозы). Расчет допустимого содержания радионуклида в организме проводят с учетом его радиотоксичности и непревышения ПДД в критическом органе. Контрольные уровни должны обеспечивать такие низкие уровни облучения, какие можно достичь при соблюдении основных дозовых пределов.

Предельно допустимое годовое поступление ПДП радионуклида через органы дыхания;

Допустимое содержание радионуклида в критическом органе ДС А;

Допустимая мощность дозы излучения ДМД А;

Допустимая плотность потока частиц ДПП А;

Допустимая объемная активность (концентрация) радионуклида в воздухе рабочей зоны ДК А;

Допустимое загрязнение кожных покровов, спецодежды и рабочих поверхностей ДЗ А.

Предел годового поступления ПГП радионуклида через органы дыхания или пищеварения;

Допустимая объемная активность (концентрация) радионуклида ДК Б в атмосферном воздухе и воде;

Допустимая мощность дозы ДМД Б;

Допустимая плотность потока частиц ДПП Б;

Допустимое загрязнение кожных покровов, одежды и поверхностей ДЗ Б.

Численные значения допустимых уровней в полном объеме содержатся в "Нормах радиационной безопасности".

Пределы допустимых экспозиционных доз с годами менялись, и в целом, по мере того, как увеличивающиеся знания о рисках заболевания раком в результате облучения указывали на то, что угроза, которую представляет облучение, -значительно больше, чем предполагалось ранее, наблюдалась тенденция к их понижению. Для того чтобы гарантировать, что персонал не подвергается вредному воздействию свыше нормы, необходимо должным образом контролировать наиболее важные пути этого воздействия. Необходимо также учитывать, что ионизирующее излучение оказывает воздействие на людей различными путями.

9 Трансурановые элементы – как радиационно-опасный фактор

Трансурановые радиоактивные элементы - химические элементы с атомным номером, больше чем у урана-92:

240 Pu, 239 Pu, 239 U, 239 Np, 247 Cm, 241 Am

Википедия:

Элементы с атомным номером более 100 называются трансфермиевыми элементами. Одиннадцать из известных трансурановых элементов (93-103) принадлежит к числу актиноидов. Трансурановые элементы с атомным номером более 103 называются трансактиноидами.

Все известные изотопы трансурановых элементов имеют период полураспада значительно меньший, чем возраст Земли. Поэтому трансурановые элементы практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Элементы до фермия включительно образуются в ядерных реакторах в результате захвата нейтронов и последующего бета-распада. Трансфермиевые элементы образуются только в результате слияния ядер.

Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Pu, п. н. 94), америция (Am, п. н. 95), кюрия (Cm, п.н. 96), берклия (Bk, п. н. 97), калифорния(Cf, п. н.98), эйнштейния (Es, п.н.99), фермия (Fm, п.н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102) и лоуренсия (Lr, п. н. 103). Получены также трансактиноиды с порядковыми номерами 104-118; в этом ряду имена присвоены элементам 104-112: резерфордий (Rf, 104), дубний (Db, 105), сиборгий (Sg, 106), борий (Bh, 107), хассий (Hs, 108), мейтнерий (Mt, 109), дармштадтий (Ds, 110), рентгений (Rg, 111), коперниций (Cn, 112). Элементы 113-118 пока имеют временные названия, производные от соответствующих латинских числительных: унунтрий (Uut, 113), унунквадий (Uuq, 114), унунпентий (Uup, 115), унунгексий (Uuh, 116), унунсептий (Uus, 117), унуноктий (Uuo, 118).

Химические свойства лёгких трансурановых актиноидов, получаемых в весовых количествах, изучены более или менее полно; трансфермиевые элементы (Md, No, Lr и так далее) изучены слабо в связи с трудностью получения и короткими временами жизни. Кристаллографические исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств показали, что элементы с п. н. 93-103 - аналоги лантаноидов. Из всех трансурановых элементов наибольшее применение нашёл нуклид плутония 239Pu как ядерное топливо.

Трансурановые элементы (ТУЭ).

все эти радионуклиды испытывают α-распад и все долгоживущие.

Трансурановые радионуклиды (элементы) образуются в результате последовательно повторяющихся актов захвата нейтронов (n,γ) и последующим β-распадом:

1. 235 U(n,γ) 236 U(n,γ) 237 U 237 Np(n,γ) 238 Np 238 Pu

2. 238 U(n,γ) 239 U 239 Np 239 Pu

3. 239 Pu(n,γ 240 Pu

4. 240 Pu(n,γ) 241 Pu 241 Am

5. 241 Pu(n,γ) 242 Pu

Здесь приведены только основные превращения, в результате которых образуются значимые для радиоэкологии радионуклиды.

С увеличением Z и A синтезируемого ядра его выход резко уменьшается. В отличие от ядерного взрыва, при котором синтез ТУЭ происходит за время 10 -6 ÷ 10 -8 с при очень высоком интегральном нейтронном потоке (до 10 23 ÷ 10 23 нн/см 2), в ядерном реакторе время синтеза может продолжаться в течение многих лет при меньшей интенсивности нейтронного потока. Наибольший выход имеет реакция 2. – выход 239 Np и 239 Pu при плотности потока нейтронов в реакторе 10 13 нн/см 2 с составляет 0,1 Ки/1 г U.

Реакция 238 U(n,γ) 239 U → 239 Np → 239 Pu может происходить и в природных условиях под действием нейтронов спонтанного деления U(s,f) и нейтронов из (α,n) реакции на уране, содержащемся в урановых рудах. Выход ядер 239 Pu в этом случае порядка (0,4 ÷ 15)·10 -12 относительно содержания ядер 238 U в рудах.

Трансурановые элементы наиболее интенсивно нарабатываются в ядерных реакторах (в том числе и энергетических) и являются одним из самых ценных продуктов переработки выгоревшего ядерного топлива. Кроме ЯТЦ и ЯВ источником выбросов ТУЭ явилась авария ЧАЭС.

Все трансурановые элементы химически очень активны. Характерная их особенность – способность образовывать соединения с водородом, азотом, кислородом, галогенами, а также комплексные соединения. Степени окисления их от 2 + до 7 + .

Валентность радионуклидов плутония от 2 + до 7 + (2 + наименее характерна). В большинстве случаев радионуклиды плутония образуют нерастворимые соединения. Окислы плутония PuO, Pu 2 O 3 ,PuO 2 и фазы переменного состава от Pu 2 O 3 до Pu 4 O 7 . В водных растворах образует ионы (от 3 + до 7 +), причем все ионы могут находиться в растворе одновременно (кроме 7 +). Они подвержены гидролизу (эта способность возрастает в ряду PuO

Валентность 241 Am от 2 + до 7 + , причем наименее характерны 2 + и 7 + , а устойчивые 3 + , в твердом состоянии и в виде комплексов в растворе – 4 + . Окислы AmO, Am 2 O 3 , и AmO 2 . Образует нитридAmN, сульфид Am 2 S, а также металлоорганическое соединение Am(C 5 H 5) 3 . Америций образует растворимые соединения с галогенами (AmCl 2 , AmBr, AmJ 3). Образует комплексные соединения с минеральными и органическими кислотами. В отличие от плутония соединения америция обладают бóльшей растворимостью и, следовательно, бóльшей миграционной способностью.

В степени окисления 3 + свойства ТУЭ подобны свойствам лантаноидов, но обладают более сильно выраженной способностью к комплексообразованию (она возрастает в ряду U

В степени окисления 4 + образуют оксиды, фториды, устойчивы в водных растворах (U, Np, Pu), в водных растворах образуют комплексы. Соединения (гидрооксиды, фториды, иодиды, фосфаты, карбонаты) труднорастворимые. Сильные комплексообразователи (склонность возрастает от U к Am).

В степени окисления 5 + существуют в виде диокислов MeO 2 + . Эта ионная форма определяет химические свойства – малую склонность к гидролизу и комплексообразованию. В степени окисления 6 + находятся в форме ионов MeO 2 2+ . Известно значительное число комплексных соединений.

В степени окисления 7 + наиболее устойчив Pu. В твердом состоянии существует в виде ионов MeO 5 5- , MeO 5 3- , 4- и MeO 4 - , а в растворах – в гидратированной форме аниона MeO 5 3+ .

В общем, закономерности миграции плутония и америция подобны. Поэтому достаточно рассмотреть особенность миграции радионуклидов плутония.

Они определяются растворимостью соединений плутония в природных средах и, особенно, первоначальная химическая форма. При ядерных взрывах такой формой являются практически нерастворимые окислы и, в основном, отдельные атомы, которые с глобальными выпадениями поступают на земную поверхность и только здесь могут образовывать растворимые соединения.

В выбросах ЯТЦ преобладают растворимые соединения плутония, а также его комплексные соединения с органическими лигандами.

Особо сложным составом отличались выбросы при аварии ЧАЭС. Их можно разделить на 4 группы :

А - механически выброшенные из активной зоны тонкодисперсные частицы топлива, близкие по радионуклидному составу к отработанному топливу; осели на земную поверхность в ближней зоне (R ≤ 60 – 70 км).

Б – мелкодисперсное топливо и другие продукты, умеренно обогащенные летучими радионуклидами; содержание радионуклидов плутония в ~ 2 раза больше ожидаемого; осели на земную поверхность в зоне R ≤ 100 км.

В – выбросы, сильно обогащенные летучими радионуклидами, в том числе плутонием; осели на земную поверхность в зоне R ≤ 150 км и далее.

Г – выбросы, обогащенные радионуклидами плутония до 200 раз, в том числе частично растворимые соединения плутония; осели на земную поверхность в дальней зоне.

Различия в этих группах выбросов обусловлены главным образом различием температур в аварийном реакторе к моменту взрыва. Содержание кислорастворимых форм плутония возрастает от группы А и Б к группам В, Г в 4 – 15 раз и доходит до 55 ÷ 85%.

В настоящее время основным резервуаром радионуклидов плутония и 241 Am являются поверхность почв и донные отложения (более 99% поступивших и поступающих от глобальных и чернобыльских выпадений и от выбросов предприятий ЯТЦ). В биологических объектах этих трансурановых элементов не более 1% (в основном в растениях, а в животных еще в 5 ÷ 10 4 раз меньше). Радионуклиды плутония находятся преимущественно в 4 + нерастворимой форме. Коэффициент диффузии в почве ~ 10 -9 см/с.

Только около ~ 10% этих радионуклидов может быть в растворимой доступной для растений форме. Из растений наибольшую концентрацию радионуклидов плутония имеют низкорастущие растения (травы, мхи, лишайники). Это следствие того, что радионуклиды плутония перераспределяются на земной поверхности в основном за счет ветрового переноса и эрозии. Коэффициент накопления трансурановых элементов растениями очень низкий (10 -1 ÷ 10 -3).

Изотопные отношения радионуклидов плутония, содержащихся в почве различных регионов, существенно различаются из-за различия источников их поступления (глобальный, от ЯТЦ, авария ЧАЭС). Так, отношение 240 Pu/ 239 Pu от ядерных взрывов – (0,05 ÷ 0,06); от глобальных выпадений - около 0,176; от выбросов ЯТЦ вместе с глобальными выпадениями – (0,049 ÷ 0,150), а от чернобыльских выпадений – (0,30 ÷ 0,35).

Изотопные отношения для различных регионов варьируют в следующих пределах:

Видно, что основным радионуклидом плутония в выбросах является 239 Pu. Очень малы выбросы 238 Pu и 242 Pu. Несмотря на относительно низкие выбросы 241 Pu, они играют особую роль, так как в результате распада этого радионуклида образуется долгоживущий 241 Am. Поэтому содержание 241 Am в окружающей среде непрерывно возрастает. Так, в период 1940 – 1990 гг. содержание 241 Am в атмосфере увеличилось в 2 раза.

Абсолютное содержание радионуклидов плутония в почвах и атмосферных аэрозолях очень сильно варьирует, особенно в зависимости от расстояния от ЧАЭС. Так в атмосферных аэрозолях содержание плутония уменьшается в 10 4 раз при переходе от ближней к дальней зоне (в которой содержание плутония находится на уровне 19 Бк/л), плотность выпадений уменьшается в ~ 170 раз (до уровня 1,25·10 5 Бк/м 2), содержание на поверхности почвы уменьшается в ~ 370 раз (до уровня ~ 10 Бк/м 2). В целом по мере удаления от ЧАЭС уровень загрязнения приближается к фону глобального загрязнения – для земной поверхности (10 ÷ 60) Бк/м 2 . Средняя удельная активность радионуклидов плутония в почвах для европейской части России ~ 140 Бк/кг при фоне глобального загрязнения около 60 Бк/кг.

Человек всегда стремился отыскать материалы, которые не оставляют никаких шансов своим конкурентам. Издревле учёные искали самые твердые материалы в мире , самые лёгкие и самые тяжелые. Жажда открытий привела к открытию идеального газа и идеально чёрного тела. Представляем вам самые удивительные вещества в мире.

1. Самое черное вещество

Самое чёрное вещество в мире называется Vantablack и состоит из совокупности углеродных нанотрубок (см. углерод и его аллотропные модификации). Проще говоря, материал состоит из бесчисленного множества «волосков», попав в которые, свет отскакивает от одной трубки к другой. Таким образом поглощается около 99,965% светового потока и лишь ничтожная часть отражается обратно наружу.
Открытие Vantablack открывает широкие перспективы применения этого материала в астрономии, электронике и оптике.

2. Самое горючее вещество

Трифторид хлора является самым горючим веществом из когда-либо известных человечеству. Является сильнейшим окислителем и реагирует практически со всеми химическими элементами. Трифторид хлора способен прожечь бетон и легко воспламеняет стекло! Применение трифторида хлора практически невозможно из-за его феноменальной воспламеняемости и невозможности обеспечить безопасность использования.

3. Самое ядовитое вещество

Самый сильный яд — это ботулотоксин. Мы знаем его под названием ботокс, именно так он называется в косметологии, где нашел свое основное применение. Ботулотоксин — это химическое вещество, которое выделяют бактерии Clostridium botulinum. Помимо того, что ботулотоксин — самое ядовитое вещество, так он ещё и обладает самой большой молекулярной массой среди белков. О феноменальной ядовитости вещества говорит тот факт, что достаточно всего 0,00002 мг мин/л ботулотоксина, чтобы на полдня сделать зону поражения смертельно опасной для человека.

4. Самое горячее вещество

Это, так называемый, кварк-глюонная плазма. Вещество было создано с помощью столкновением атомов золота при почти световой скорости. Кварк-глюонная плазма имеет температуру 4 триллиона градусов Цельсия. Для сравнения, этот показатель выше температуры Солнца в 250 000 раз! К сожалению, время жизни вещества ограничено триллионной одной триллионной секунды.

5. Самая едкая кислота

В этой номинации чемпионом становится фторидно-сурьмяная кислота H. Фторидно-сурьмяная кислота в 2×10 16 (двести квинтиллионов) раз более едкая, чем серная кислота. Это очень активное вещество, которое может взорваться при добавлении небольшого количества воды. Испарения этой кислоты смертельно ядовиты.

6. Самое взрывоопасное вещество

Самое взрывоопасное вещество — гептанитрокубан. Он очень дорогой и применяется лишь для научных исследований. А вот чуть менее взрывоопасный октоген успешно применяется в военном деле и в геологии при бурении скважин.

7. Самое радиоактивное вещество

«Полоний-210» — изотоп полония, который не существует в природе, а изготавливается человеком. Используется для создания миниатюрных, но в тоже время, очень мощных источников энергии. Имеет очень короткий период полураспада и поэтому способен вызывать тяжелейшую лучевую болезнь.

8. Самое тяжёлое вещество

Это, конечно же, фуллерит. Его твердость почти в 2 раза выше, чем у натуральных алмазов. Подробнее о фуллерите можно прочитать в нашей статье Самые твердые материалы в мире .

9. Самый сильный магнит

Самый сильный магнит в мире состоит из железа и азота . В настоящее время, широкой общественности недоступны детали об этом веществе, однако уже сейчас известно, что новый супер-магнит на 18% мощнее самых сильных магнитов применяющихся сейчас — неодимовых. Неодимовые магниты изготавливаются из неодима, железа и бора.

10. Самое текучее вещество

Сверхтекучий Гелий II почти не имеет вязкости при температурах близких к абсолютному нулю. Этим свойством обусловлено его уникальное свойство просачиваться и выливаться из сосуда, изготовленного из любого твёрдого материала. Гелий II имеет перспективы использования в качестве идеального термопроводника, в котором не рассеивается тепло.

2.2.2. Природные (естественные) радиоактивные вещества

Встречающиеся в природе радиоактивные элементы принято называть естественными. Большинство из них – тяжелые элементы с порядковыми номерами от 81 до 96. Природные радиоактивные элементы путем альфа- и бета-распада превращаются в другие радиоактивные изотопы. Эта цепь радиоактивных превращений называется радиоактивным рядом или семейством.

Тяжелые естественные радиоизотопы образуют четыре радиоактивных семейства: урана-радия; тория; актиния; нептуния. Массовые числа членов урано-радиевого ряда всегда четные и подчиняются закону: А = 4n + 2, где n изменяется от 51 до 59. Для ториевого ряда массовые числа четные и определяются по формуле: А = 4n, где n изменяется от 52 до 58. Для актиниевого ряда массовые числа элементов всегда нечетные и могут быть определены по формуле: А = 4n + 3, где n изменяется от 51 до 58. Массовые числа элементов ряда нептуния нечетные и определяются по формуле: А = 4n + 1, где n изменяется от 52 до 60.

Родоначальники каждого семейства характеризуются очень большими периодами полураспада (см. табл. 2), которые сопоставимы с временем жизни Земли и всей Солнечной системы.

Таблица 2 – Родоначальники естественных радиоактивных семейств

Самый большой период полураспада у тория (14 млрд лет), поэтому он со времени аккреации Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреации Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен в урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса.

Периоды полураспада и типы распада членов естественных радиоактивных рядов приведены в таблице 2.

Естественные радиоактивные семейства обладают рядом общих особенностей, которые заключаются в следующем:

1. Родоначальники каждого семейства характеризуются большими периодами полураспада, находящимися в пределах 10 8 -10 10 лет.

2. Каждое семейство имеет в середине цепи превращений изотоп элемента, относящийся к группе благородных газов (эманацию).

3. За радиоактивными газами следуют твердые короткоживущие элементы.

4. Все изотопы трех радиоактивных семейств распадаются двумя путями: альфа- и бета-распадами. Причем короткоживущие ядра семейств испытывают конкурирующие альфа- и бета-распад, тем самым образуя разветвления рядов. Если при альфа- и бета-распадах ядра не переходят сразу в нормальное состояние, то эти акты сопровождаются гамма-излучением.

Ряды заканчиваются стабильными изотопами свинца с массовыми числами 206, 208 и 207, соответственно, для уранового, ториевого, актиноуранового ряда.

Семейства урана-радия и тория являются активными гамма-излучателями по сравнению с семейством актиния, мощность дозы гамма-излучения которого весьма невелика.

Таким образом, в радиоактивных семействах имеются альфа-, бета- и гамма-излучатели, причем мощность дозы каждого излучения в разных семействах неодинакова. Общее число излучателей того или иного рода для разных семейств приведено в таблице 3.

Таблица 3 – Количество излучателей естественных рядов

Название
ряда

Альфа-излучатели

Бета-излучатели

Гамма-излучатели

общее количество

количество важных

общее количество

количество важных

общее количество

количество важных

Урана-радия

В ряду урана-238 всего 19 радионуклидов и один стабильный изотоп – свинец-206. Наиболее важные альфа-излучатели этого семейства: уран-238, уран-234, торий-230, радий-226, радон-222, полоний-218, полоний-214 и полоний-210. Относительное количество других альфа-излучателей ряда невелико, поэтому они не представляют практического интереса.

К числу существенных бета-излучателей ураново-радиевого ряда относятся: протактиний-234, свинец-214, висмут-214 и висмут-210. Причем, бета-излучение протактиния-234 составляет около 50% от
бета-излучения всех изотопов семейства.

Основную долю (97,9%) в мощность гамма-излучения этого семейства вносят продукты распада радия-226 (свинец-214 и висмут-214) и радона-218 (полоний-214). Торий-234 и протактиний-234 – продукты распада родоначальника семейства (урана-238), дают около 2,1% общей мощности гамма-излучения. Вклад остальных членов ряда в суммарную интенсивность гамма-квантов ничтожно мал.

В ряду актиния находится 14 радиоизотопов и один стабильный изотоп – свинец-207. Поскольку в природном уране актиноурана (урана-235) очень мало, альфа-излучение актиниевого семейства составляет не более 5%, а гамма-излучение – около 1,25% от интенсивности соответствующих лучей ураново-радиевого ряда.

Ряд тория содержит 12 радионуклидов и один стабильный изотоп – свинец-208. Главными альфа-излучателями здесь являются: торий-232,
торий-228, радий-224, радон-220, полоний-216, висмут-212 и полоний-212.

К основным бета-излучателям в ториевом ряду относятся: актиний-228, свинец-212, висмут-212 и таллий-208.

Основной вклад в гамма-излучение ряда тория вносят продукты распада тория-228 (полоний-216, свинец-212, висмут-212 и таллий-208). Их доля – 60,2% всей интенсивности гамма-квантов. Остальная мощность гамма-излучения (39,8%) принадлежит продукту распада радия-228 (актинию-228). Доля остальных гамма-излучателей в общей мощности гамма-излучения ничтожна.

Ниже приведена краткая характеристика важнейших радиоизотопов, входящих в естественные семейства.

Уран (U). Химический элемент с порядковым номером 92. Имеет три природных изотопа 238 U, 235 U и 234 U. Период полураспада первого 4,5×10 9 лет, второго – 7,13×10 8 лет, третьего – 2,52×10 5 лет. Их относительную распространенность в рудах можно выразить так: 99,28; 0,71; 0,006% соответственно.

Этот серебристо-белый металл открыт Клапротом в 1789 году. По внешнему виду металлический уран напоминает железо. Он окисляется в воздухе до самовоспламенения и горит ярким пламенем. Плотность урана 19 г/см 3 , температура плавления 1133°С. Хорошо растворяется в минеральных кислотах.

Уран широко распространен в земной коре. Он содержится в горных породах, почве, воде озер, рек и морей.

Уран-238 является родоначальником уранового семейства. В первичных минералах он практически всегда находится в равновесии со своими короткоживущими продуктами распада, а также со своим долгоживущим изотопом – ураном-235.

Уран-235 (актиноуран) является родоначальником актиноуранового семейства, которое в природе всегда сопутствует семейству урана-238. Актиноуран открыт сравнительно недавно (в 1935 г.), т.е. значительно позднее продуктов его распада, чем и объясняется несоответствие названий актиниевого семейства и его родоначальника.

Ядро урана-235 обладает замечательным свойством. Кроме спонтанного распада он способен делиться при захвате нейтрона с освобождением колоссальной энергии, поэтому является одним из ядерных горючих.

Уран, химически выделенный из руд (естественно, что это смесь всех трех природных изотопов урана) и приготовленный в виде окиси (U 3 O 8), является стабильным источником альфа-излучения. Примерно через год после его выделения устанавливается радиоактивное равновесие между ураном-238 и короткоживущими бета-активными продуктами его распада. Тогда этот препарат может служить в качестве стабильного источника бета-излучения.

Уран связан с рудами осадочного, гидротермального и магматического происхождения. Он содержится более чем в 100 минералах. Среди них наиболее часты окислы урана, соли фосфорной, ванадиевой, кремниевой, мышьяковой, титановой и ниобиевой кислот. Наиболее важные промышленные руды урана представлены первичным минералом – уранинитом (урановой смолкой), представляющим собой окисел урана черного цвета. Кроме того есть множество вторичных минералов урана, которые называются урановыми слюдками. Наиболее распространенные из них:
торбернит – Си(UО 2) 2 (PO 4) 2 ×nH 2 О, отенит – Са(UO 2) 2 (РО 4) 2 ×nН 2 О,
карнотит – K 2 (UО 2) 2 (VО 4) 2 ×3H 2 О, тюямунит – Ca(UO 2) 2 (VO 4) 2 ×8H 2 О.
Из урановых слюдок крупные промышленные скопления образуют только карнотит и тюямунит. Они же являются рудой для получения ванадия и радия.

Уран и радий в России впервые были получены из руды месторождения Тюя-Муюн в Фергане. Носителями этих металлов здесь оказались два минерала из группы урановых слюдок – тюямунит и ферганит. Первый минерал открыт К.А. Ненадкевичем в 1912 г., а второй – И.А. Антиповым в 1899 году.

Торий (Th ) . Химический элемент с порядковым номером 90. Это светло-серый металл с плотностью 11,72 г/см 3 и температурой плавления 1750°С, открытый Берцелиусом в 1828 году. Трудно поддается действию кислот. Он имеет 6 изотопов, из которых долгоживущие только два: торий-232 (Т физ. = 1,39×10 10 лет) и ионий-230 (Т физ. = 8×10 4 лет).

Скорость распада тория очень мала. За 14 миллиардов лет количество атомов тория-232 уменьшается только в 2 раза. Поскольку возраст Земли всего лишь 4,5 млрд лет, то можно полагать, что значительное количество этого элемента сохранилось со времени аккреации нашей планеты.

Руды тория по своему генезису являются магматическими. При разрушении таких месторождений образуются россыпи, обогащенные минералами тория. Основным источником тория служат пески, содержащие минерал монацит – (Се, La, Nd, Th) PО 4 . Особенно богаты монацитом морские россыпи. Промышленное значение имеет также минерал торит – ThSiО 4 .

Актиний (Ас ) . Химический элемент с порядковым номером 89. Серебристо-белый металл с температурой плавления 1050°С, имеющий два изотопа: актиний-227 (Т физ. = 21,8 года) и мезоторий-228 (Т физ. = 6,13 часа).

Актиний, претерпевая альфа- и бета-распад, образует одно из разветвлений ряда актиния. В основном он является бета-излучателем. Ядерных гамма-лучей этот радионуклид не имеет. В смеси с бериллием актиний служит для приготовления источников нейтронов. Актиний встречается в рудах урана и тория.

Радий (Ra ) . Химический элемент с порядковым номером 88. Это серебристо-белый блестящий металл с плотностью 6 г/см 3 и температурой плавления 700°С, открытый в начале XX века супругами Кюри, имеет 4 изотопа: радий-226 (Т физ. = 1602 года), мезоторий-228 (Т физ. = 6,7 года), актиний Х-223 (Т физ. = 11,4 сут.) и торий Х-224
(Т физ. = 3,64 сут.). По химическим свойствам радий близок к барию, изоморфно замещает последний в минералах: барите (сульфат бария) и витерите (карбонат бария). В природных водах радий встречается в виде хлорида.

В результате альфа-распада радия-226, сопровождаемого гамма-излучением, образуется радиоактивный газ – радон (эманация). В закрытом сосуде радон через 40 дней приходит в состояние радиоактивного равновесия с радием, находящимся в сосуде. После этого срока препарат можно использовать в качестве эталонного источника гамма-излучения.

Радон приходит в равновесие со своими короткоживущими продуктами распада (Ra A, Ra В, и Ra С) через 3 часа. Другой изотоп радия – мезоторий-1, обладает мягким бета-излучением, интенсивность гамма-излучения его невелика.

Изотопы радия широко распространены в горных породах и рудах, но в чрезвычайно малых концентрациях. На 3 тонны урана приходится 1 г равновесного радия. Поскольку в различных горных породах радий встречается в неодинаковых концентрациях, то это его свойство используется для диагностики петрографических разностей по гамма-лучам. Добывается радий из урановых руд. Он широко применяется в медицине для лучевой терапии.

Радон (Rn ) . Химический элемент с порядковым номером 86. Это тяжелый инертный радиоактивный газ с плотностью 9,73 г/л. Он бесцветен и хорошо растворяется в воде. Имеет 4 изотопа: радон-222
(Т физ. =3,823 дня), радон-218 (Т физ. =1,9´10 -2 с), торон-220 (Т физ. =54,5 с) и актинон-219 (Т физ. = 3,92 с). Все они принадлежат к группе благородных газов, обладают альфа-активностью и других излучений не имеют. Радоновая эманация является источником активных осадков. Радон в смеси с бериллием используется в научных исследованиях и медицине как источник нейтронов.

Астат (At ) . Химический элемент из группы галогенов с порядковым номером 85. В переводе с греческого «астат» означает «нестабильный», т.к. это единственный галоген, не имеющий стабильных изотопов. Все четыре изотопа астата радиоактивны: астат-210 (Т физ. = 8,3 ч), астат-218 (Т физ. = 2 с), астат-215 (Т физ. = 1×10 -4 с) и астат-216 (Т физ. =
= 3×10 -4 с).

В незначительных количествах астат входит во все три естественные радиоактивные семейства. Его изотопы альфа-активны. Небольшая часть астата претерпевает бета-распад.

Полоний (Ро ) . Химический элементе с порядковым номером 84. Это мягкий серебристо-белый металл с плотностью 9,3 г/см 3 и температурой плавления 254° С. Полоний имеет 8 радиоактивных изотопов: полоний-209 (Т физ. = 103 года), полоний-210 (Т физ. = 140 сут.), радий А-218 (Т физ. = 3,05 мин), торий А-216 (Т физ. = 0,158 с), актиний Ас-215 (Т физ. = = 1,83 × 10 -3 с), радий-214 (Т физ. = 1,55 × 10 -4 с), торий (Т физ. = 3 × 10 -7 с), актиний (Т физ. = 5 × 10 -3 с).

Полоний является чистым альфа-излучателем, что позволяет широко использовать его в лабораторных исследованиях. В смеси с бериллием он представляет собой лучший источник нейтронов.

Свинец (Рв ) . Химический элемент с порядковым номером 82. Представляет собой синевато-серый мягкий ковкий металл с плотностью 11,34 г/см 3 и температурой плавления 327,4°С, химически стойкий. Свинец имеет 3 устойчивых изотопа: свинец-206 (радий G), свинец-207 (актиний D), свинец-208 (торий D), и 4 радиоактивных: свинец-210 (радий D, Т = 22 года), свинец-212 (торий В, Т = 10,6 часа), свинец-211 (актиний В, Т = 36,1 мин), свинец-214 (радий В, Т = 26,8 мин).

Устойчивые изотопы свинца с массовыми числами 206, 207 и 208 являются конечными продуктами распада трех естественных радиоактивных рядов. Эти изотопы нерадиоактивны, но всегда присутствуют в радиоактивных рудах. Отношение количества нерадиоактивного свинца к содержанию радиоактивных элементов (урана, тория) в горных породах и рудах позволяет определить абсолютный возраст геологических образований. Остальные четыре изотопа свинца радиоактивны. Все они распадаются путем бета-излучения. Продукты распада радия D кроме бета-лучей выделяют альфа-лучи, поэтому из свинца-210 получают стандартные источники бета- и альфа-излучения.

Свинец применяют в качестве экранов и фильтров для гамма-излучения. Применение его для экранирования альфа- и бета-излучения нецелесообразно, поскольку в свинце всегда содержится некоторое количество радиоактивных изотопов, особенно радия D. В природе встречаются и другие радиоактивные изотопы свинца (с массовыми числами 200, 201 и 203), но количество их ничтожно.

Естественные радиоизотопы, не входящие в радиоактивные семейства. Кроме естественных радиоактивных элементов, являющихся членами трех рассмотренных выше естественных рядов, в природе имеются изотопы, генетически не связанные между собой, но обладающие радиоактивностью. Количество таких радиоизотопов превышает 200, период полураспада их колеблется от долей секунды до миллиардов лет.

Интерес для эколога представляют изотопы с большим периодом полураспада: калий-40, рубидий-87, самарий-147, углерод-14, лютеций-176 и рений-187. Радиоактивный распад ядер этих элементов представляет собой изолированный акт, т.е. после распада образуется устойчивый дочерний изотоп. Как видно из таблицы 4, все перечисленные ядра подвержены бета-распаду, за исключением самария, который претерпевает альфа-распад.

Таблица 4 – Естественные радиоактивные изотопы, не входящие в семейства

Атомный номер

Массовое число

Период полураспада

Тип
распада

1,3×10 9 лет

Углерод-14

Рубидий-87

5,8×10 10 лет

Самарий-147

6,7×10 11 лет

Лютеций-176

2,4×10 10 лет

4×10 12 лет

Из шести приведенных естественных радионуклидов наибольший интерес представляет калий-40, ввиду его большой распространенности в земной коре. Природный калий содержит три изотопа: калий-39, калий-40 и калий-41, из которых только калий-40 радиоактивен. Количественное соотношение этих трех изотопов в природе выглядит так: 93,08; 0,012; 6,91%.

Калий-40 распадается двумя путями. Около 88% его атомов испытывают бета-излучение и превращаются в атомы кальция-40. На один акт распада калия-40 приходится в среднем 0,893 бета-частиц с энергией 1311 кэВ и 0,107 гамма-квантов с энергией 1461 кэВ. Остальные 12% атомов, испытывая К-захват, превращаются в атомы аргона-40. На этом свойстве калия-40 основан калий-аргоновый метод определения абсолютного возраста горных пород и минералов.

Рубидий. Природный рубидий состоит из двух изотопов: рубидия-85 и рубидия-87. Радиоактивным является второй изотоп, который испускает мягкие бета-лучи с максимальной энергией 0,275 МэВ и гамма-лучи с энергией 0,394 МэВ.

Таким образом, наибольшее значение имеет 87 Rb, второе место по количеству занимает радиоизотоп 40 К, но радиоактивность 40 К в земной коре превышает радиоактивность суммы всех других естественных радиоактивных элементов за счет того, что распад 40 К сопровождается жестким бета- и гамма-излучением, а 87 Rb характеризуется мягким бета-излучением и имеет длительный период полураспада.

Таблица 5 – Концентрация некоторых радионуклидов и мощности
поглощенных доз в почвах различных типов

Типы почв

Концентрация, пКи/г

Мощность
поглощенной
дозы, мкрад/ч

Серо-коричневая

Каштановая

Чернозем

Серая лесная

Дерново-подзолистая

Подзолистая

Торфянистая

Пределы колебаний

Самарий. Из семи известных изотопов этого элемента только самарий-147 является радиоактивным. Его доля в природном самарии составляет около 15%. Он испускает альфа-лучи с энергией 2,11 МэВ, пробег которых в воздухе составляет 11,6 мм.

Лютеций . Известно несколько его изотопов, но радиоактивен только лютеций-176. Подобно калию, он распадается двумя путями: бета-распадом и К-захватом. Максимальная энергия бета-лучей около 0,4 МэВ. Гамма-излучение обладает энергией 0,270 МэВ.

Рений . Радиоактивным является изотоп рений-187, доля которого в природном рении составляет 63%. Испускает бета-лучи с энергией 0,04 МэВ.

Особое место среди природных радиоизотопов занимает углерод. Природный углерод состоит из двух стабильных изотопов, среди которых преобладает углерод-12 (98,89%). Остальная часть почти целиком приходится на изотоп углерод-14 (1,11%).

Помимо стабильных изотопов углерода известны еще пять радиоактивных. Четыре из них (углерод-10, углерод-11, углерод-15 и углерод-16) характеризуются весьма малыми периодами полураспада (секунды и доли секунды). Пятый радиоизотоп, углерод-14, имеет период полураспада 5730 лет.

В природе концентрация углерода-14 крайне мала. Например, в современных растениях один атом этого изотопа приходится на 10 9 атомов углерода-12 и углерода-13. Однако с появлением атомного оружия и ядерной техники углерод-14 получается искусственно при взаимодействии медленных нейтронов с азотом атмосферы, поэтому количество его постоянно растет.

Наиболее весомыми из всех естественных источников радиации
является невидимый, не имеющий запаха и вкуса, тяжелый (в 7,5 раза тяжелее воздуха) газ радон, который вместе с другими дочерними продуктами распада ответственен за 75% годовой индивидуальной эффективной эквивалентной дозы, получаемой населением от земных источников радиации и за 50% дозы от всех естественных источников радиации. Радон в виде 222 Rn и 220 Rn выделяется из земной коры повсеместно, но основную дозу человек получает находясь в закрытом, непроветриваемом помещении (уровень радиации выше в 8 раз, чем в наружном воздухе) за счет следующих источников: поступление из почвы, фундамента, перекрытия; высвобождение из строительных материалов жилых помещений составляет 60 кБк/сут., из наружного воздуха проникает 10 кБк/сут., высвобождается из воды, используемой в бытовых целях – 4 кБк/сут., выделяется из природного газа при его сгорании – 3 кБк/сут.

Больших концентраций радон достигает в помещениях, если дом стоит на грунте с повышенным содержанием радионуклидов или если при его строительстве использованы материалы с повышенной радиоактивностью.

Таблица 6 – Средняя удельная радиоактивность строительных материалов

Примечание. В таблице представлены материалы НКДАР ООН, 1982 год.

По сведениям ученых Марийского государственного университета (Новоселов Г.Н., Леухин А.В., Ситников Г.А., 1997) наиболее высокой удельной активностью обладал каменноугольный шлак (А эфф. =
= 437 Бк/кг), гранит. Более низкая удельная радиоктивность была у мрамора, керамического кирпича (А эфф. = 335 Бк/кг), силикатного кирпича (А эфф. = 856 Бк/кг), песка строительного (А эфф. = 114 Бк/кг). Для бетона характерен достаточно большой диапазон вариации удельной радиоактивности.

В качестве других источников земной радиации следует назвать каменный уголь, фосфаты и фосфорные удобрения, водоемы и др.

В целом естественные источники ИИ ответственны примерно за 90% годовой эффективной эквивалентной дозы облучения, из этой дозы на долю земных источников приходится 5/6 частей (в основном за счет внутреннего облучения), на долю космических источников – 1/6 часть (в основном путем внешнего облучения).

2.2.2.1. Радиоактивность оболочек Земли

Первые наблюдения радиоактивности почв и горных пород были проведены в самом начале XX века. Последующие исследования показали, что все объекты географической оболочки обладают определенной радиоактивностью. Общее представление о порядке наиболее часто наблюдаемых величин естественной радиоактивности почв, растений, земной коры и гидросферы можно видеть в таблице 7.

Таблица 7 – Среднее содержание естественных радионуклидов в разных объектах географической оболочки Земли (по А.П. Виноградову, Л.А. Перцову)

2.2.2.2. Радиоактивность горных пород

О распределении радиоактивных элементов в толще земной коры и литосферы в целом, на глубинах недоступных непосредственному наблюдению, можно судить только на основании косвенных фактов и общих представлений о строении Земли. В настоящее время наибольшим признанием пользуется концепция, согласно которой радиоактивность пород падает с глубиной, но все же остается измеримой до весьма значительных глубин. Резко выраженное накопление радиоактивных элементов в гранитном слое континентальной коры, установленное Стреттом еще в 1906 году, подтвердилось последующими исследованиями.

Средние значения концентраций радиоактивных элементов в горных породах приведены в таблице 8, а в таблице 9 дана удельная активность горных пород в отношении естественных радионуклидов по данным ВНИИФТРИ (1996). Из этих данных видна основная геохимическая закономерность уменьшения содержания радиоизотопов с увеличением основности магматических пород. Наибольшее содержание естественных радионуклидов наблюдается в изверженных породах кислого и щелочного состава, богатых калием. Основными носителями радиоактивных элементов в этих породах являются акцессорные минералы: циркон, монацит, ксенотим, ортит, апатит и сфен. Что касается главных породообразующих минералов, то установлено, что салические минералы (в первую очередь полевые шпаты) обладают в среднем в 3 раза большей радиоактивностью, чем фемические. Поэтому на практике существует эмпирическое правило: магматические породы светлых оттенков более радиоактивны, чем темные.

Таблица 8 – Распространеность радиоактивных элементов в горных породах,
мас. % (по А.П. Виноградову)


Таблица 9 – Удельная активность естественных радионуклидов в горных породах

Горные породы

Удельная активность, Бк/кг

Магматические:

Основные

Ультраосновные

Осадочные:

Известняки

Песчаники

Сланцы глинистые

Наиболее высокой радиоактивностью среди осадочных пород обладают глинистые сланцы и глины. Содержание радионуклидов в них приближается к таковому в кислых изверженных породах – гранитах. На основании анализа многочисленных диаграмм гамма-каротажа глубоких скважин и результатов лабораторного радиометрического изучения большого количества образцов осадочных горных пород было выявлено, что среди них наименьшей радиоактивностью обладают чистые химические и органические осадки (каменная соль, гипс, известняки, доломиты, кварцевые пески, кремнистые сланцы, яшмы). Морские осадки в целом более радиоактивны, чем континентальные.

2.2.2.3. Радиоактивность почв

Главным источником радиоактивных элементов в почвах следует считать почвообразующие породы. Поэтому почвы, развитые на кислых магматических породах, относительно обогащены радиоактивными элементами (ураном, радием, торием, калием), а почвы, образованные на основных и ультраосновных породах, бедны ими. Глинистые почвы почти везде богаче радиоизотопами, чем песчанистые.

Почвы, как рыхлые образования, по вещественному составу близки к осадочным породам, поэтому они во многом подчиняются закономерностям распределения естественных радионуклидов в отложениях этого генезиса. Тонкая коллоидная фракция почв, с которой связаны обменно-сорбционные процессы, обогащена радиоактивными элементами по сравнению с более крупными частицами. То же самое касается и органической составляющей почв. Однако прямой зависимости между радиоактивностью почв и количеством органического вещества в них не наблюдается. В таблице 10 приведена удельная активность основных типов почв по данным ВНИИФТРИ (1996). По данным А.П. Виноградова содержание радия в верхнем горизонте почв колеблется от 2,8 до 9,5×10 -10 %. Причем в большинстве почв наблюдается резкое смещение радиоактивного равновесия между ураном и радием в сторону последнего, что связано с выщелачиванием урана грунтовыми водами.

Таблица 10 – Удельная активность естественных радионуклидов в почвах

Основные типы почв

Удельная активность, Бк/кг

Сероземы

Серо-коричневые

Каштановые

Черноземы

Серые лесные

Дерново-подзолистые

Подзолистые

Торфяниcтые

Таким образом, радиоактивность почв в основном обусловлена природными радиоизотопами 40 K и 87 Rb. Радиоизтоп калий-40 накапливается в пищевых продуктах растительного и животного происхождения в разной степени (табл. 11).

Таблица 11 – Содержание 40 К в пищевых продуктах

Хлеб ржаной

Мясо говяжье

Макароны

Сало свиное

Крупа гречневая

Фрукты сушеные

Картофель

Мука пшеничная

Молоко парное

Масло сливочное

Под влиянием испытаний ядерного оружия и техногенных факторов почвы повсеместно загрязнены искусственными радионуклидами. Например, средняя плотность загрязнения верхних слоев почв северного полушария радиоактивным цезием составляет 0,12 Ки/км 2 .

2.2.2.4. Радиоактивность природных вод

Радиоактивность речных и озерных вод зависит от источника их питания. Дождевые, снеговые и ледниковые воды содержат небольшое количество солей, поэтому водоемы горных районов высоких широт, имеющие этот источник питания, практически стерильны в отношении естественных радионуклидов.

Природные радионуклиды поступают в открытые водоемы суши в основном с подземными водами. Грунтовые и межпластовые воды, питая озера и реки, определяют уровни природной радиоактивности воды этих водоемов. Поэтому радиоактивность воды рек и озер подвержена значительным колебаниям. Она напрямую зависит от химического и минерального состава дренируемых ими горных пород, в которых располагаются чаши озер или водосборы рек. К другому важному фактору, влияющему на степень радиоактивности воды открытых водоемов, относится климат, от которого зависит степень химического выветривания горных пород, являющихся основным поставщиком природных радионуклидов.

Наконец, концентрация радиоизотопов в озерах зависит от степени водного обмена. Бессточные озера в районах с засушливым климатом могут быть значительно обогащены радиоактивными элементами за счет сильного испарения застойной воды.

Если исключить реки, дренирующие урановые рудные районы, то можно считать, что речные воды отличаются пониженным относительно морских вод содержанием урана, радия, тория, калия и радона, хотя есть и исключения из этого правила (например, Сыр-Дарья). В таблице приведено содержание урана в некоторых реках, по данным Д.С. Николаева.

Таблица 12 – Содержание урана в воде некоторых рек

В период паводка радиоактивность речной воды снижается, а в межень – повышается. Зимой, когда реки покрываются льдом, наблюдается повышенное содержание в воде радиоактивных газов – радона и торона.

Подземные воды бывают значительно обогащены ураном, радием, торием и радоном по сравнению с поверхностными. Количество радиоактивных элементов в них зависит от вещественного состава вмещающих пород и химизма самих вод. В гидрогеологии принято выделять радоновые, радиевые и урановые воды, в зависимости от преобладания в их составе того или иного радиоактивного элемента. Существуют и смешанные воды: радоно-радиевые, урано-радиевые, радиево-мезоториевые. Концентрация радия в подземных водах может достигать 2,5´10 -11 %, а урана – 3´10 -5 %.

Еще в тридцатые годы XX столетия В.Г. Хлопиным была замечена повышенная концентрация радия в воде нефтяных месторождений. В настоящее время, в результате интенсивной эксплуатации месторождений углеводородного сырья это приводит к накоплению природных радионуклидов на технологическом оборудовании и трубопроводах нефтяных и газовых месторождений. На отдельных месторождениях мощность экспозиционной дозы от оборудования достигает 6 мР/ч, а удельная активность природных радионуклидов в шламе превышает 10 5 Бк/кг. Следствием этого является неконтролируемое облучение персонала и населения.

2.2.2.5. Радиоактивность атмосферного воздуха

Атмосфера Земли всегда содержит газообразные радиоактивные вещества в виде инертных газов – радона, торона и актинона, источником которых являются эманирующие горные породы. Радиоактивные эманации, попадая из почвы в атмосферный воздух, затем разносятся горизонтальными и вертикальными воздушными потоками. В свою очередь радиоактивные газы, претерпевая распад, превращаются в твердые радиоизотопы, которые выпадают на поверхность Земли в виде активных осадков.

Актинон и торон не являются долгоживущими. Период полураспада первой эманации равняется всего лишь 3,92 с, а второй – 54,5 с, поэтому они встречаются в небольших количествах лишь в самых нижних слоях атмосферы вблизи земной поверхности. Период полураспада радона более значителен (3,82 сут.), вследствие чего сама эманация и продукты ее распада транспортируются ветром на большие расстояния от места выделения.

Наблюдения показывают, что нижние слои атмосферы над континентами содержат 1-2 атома радона на 1 см 3 воздуха. Концентрация торона обычно в 10000 раз меньше. Атмосферный воздух над океаном содержит радона в 100 раз меньше, чем над сушей. Концентрация радона быстро убывает с высотой. Уже на высоте 1 км его количество в 2 раза, а на высоте 4 км – в 14 раз меньше, чем у земной поверхности.

Закономерность распределения продуктов распада радиоактивных эманаций совершенно иная. Многие из твердых радиоизотопов, следующих в естественных радиоактивных рядах за эманациями, почти равномерно распределены в нижних слоях атмосферы. К примеру, концентрация Ra D на уровне земной поверхности и на высоте 10 км почти одинакова.

Твердые радиоактивные частицы, содержащиеся в воздухе, захватываются конденсирующимися каплями воды и выпадают на поверхность Земли с атмосферными осадками. После обильных дождей и снегопада радиоактивность воздуха уменьшается.

Кроме радиоактивных эманации и твердых продуктов их распада в атмосфере присутствуют радиоизотопы, образующиеся под действием космических лучей. К таким радионуклидам относится в первую очередь углерод-14, количество которого в воздухе ничтожно мало.

Вклад отдельных естественных источников в образовании эффективных эквивалентных доз человека представлен в таблице 13.

Таблица 13 – Эффективные эквивалентные дозы человека от природных источников

Источники радиации

Среднемировые данные

Космическое излучение

Гамма-излучение Земли

Внутреннее облучение

Излучение стройматериалов (радон)

Предыдущая

Радиоактивными называются химические элементы, все изотопы которых радиоактивны, то есть совокупность радиоактивных атомов с одинаковым зарядом ядра. Известно, что в настоящее время можно получить радиоактивные изотопы практически всех элементов Периодической системы Д. И. Менделеева, но такие элементы не принято называть радиоактивными.

В основном радиоактивными являются тяжелые элементы, расположенные в конце периодической системы после висмута. Висмут является последним стабильным элементом в системе, поскольку у него достигается предельное соотношение числа нейтронов и протонов (N/Z=126/83=1,518 , еще обеспечивающее стабильность ядра. У элементов с Z> 83 число нейтронов слишком велико и начинает сказываться нестабильность самого нейтрона. Лишь два элемента- технеций (№43) и прометий (№61)- не подчиняются этому правилу. И их нестабильность связана с другим обстоятельством. Отсутствие в природе технеция и прометия и всех элементов после урана связано с двумя причинами. Во - первых, их периоды полураспада меньше, чем возраст Земли. И, во - вторых эти элементы не являются членами естественных радиоактивных рядов, поэтому их запас не возобновляется за счет радиоактивного равновесия. Кроме того отсутствие стабильных изотопов - технеция (№43) и прометия (№61) обусловлено квантово- механическими правилами отбора.

Химия радиоактивных элементов отличается от химии нерадиоактивных элементов теми особенностями, о которых упоминалось выше. В природных объектах и при искусственном получении радиоактивные элементы находятся в сверхнизких концентрациях, поэтому изучение их свойств проводится обычно с использованием специфических методов. Лишь уран и торий с первых лет их открытия изучались методами классической химии. В последние годы появилась возможность изучения таких радиоактивных элементов, как нептуний, плутоний, технеций, полоний и некоторых других в аналитических количествах.

Радиоактивные элементы делят на природные (естественные) и искусственные. К природным радиоактивным элементам относятся элементы с порядковыми номерами от 84 до 92: уран, торий и продукты их распада, полоний, астат, радон, франций, радий, актиний, и протактиний.

К искусственным элементам относят технеций, прометий, и так называемые трансурановые элементы с порядковыми номерами от 93 до 110: нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий, резерфордий (№104), дубний(№ 105),сиборгий (№106), борий (№107), хассий(108), мейтнерий (№ 109), рентгений(№110).

Элементы от актиния (№ 89) до лоуренсия (№ 103) составляют группу, которую называют актиноидами.

Деление радиоактивных элементов на естественные и искусственные условно. Астат впервые был получен искусственно, а позже его короткоживущие изотопы были обнаружены в семействах урана- 238, урана-235 и тория-232, Искусственный элемент плутоний в концентрациях 10 -14 г на 1 г урана находится в рудах урана. Радиоактивные изотопы всех естественных элементов получены искусственно.

По своей химической природе радиоактивные элементы не относятся ни к определенному периоду, ни к определенной группе элементов периодической системы. Среди них имеются sp – элементы (франций, радий, полоний, радон, астат), d – элементы (технеций, элементы с Z ≥ 104), а также f – элементы (прометий и элементы с Z = 89 ÷ 103).

Для понимания и изучения химии радиоактивных элементов чрезвычайно важное значение имеет знание свойств и поведения соответствующих стабильных аналогов .

Описание радиоактивных элементов обычно проводится по следующей схеме:

положение в периодической системе;

история открытия;

физические свойства;

химические свойства;

методы выделения;

методы определения;

применение.

В основе предлагаемой последовательности изложения свойств радиоактивных элементов лежит увеличение их порядкового номера.

11.1 ТЕХНЕЦИЙ (ЭКАМАРГАНЕЦ) 43 TC

Д.И. Менделеев предсказал существование технеция, оставив для него пустую клетку в таблице, и назвал его экамарганцем. Несколько раз объявлялось об открытии элемента под номером 43, однако каждый раз это сообщение было ошибочным. Многочисленные попытки обнаружить элемент под № 43 в природе оказались безуспешными. В 1934 году немецкий физик Маттаух сформулировал правило, согласно которому у стабильных изотопов с нечетными номерами не может быть стабильных изобаров. Так, если изотоп элемента №41 ниобий-93 стабилен, то изотопы соседних элементов - цирконий-93 и молибден-93 должны быть обязательно радиоактивными. Правило распространяется на все элементы, в том числе и на элемент № 43. Этот элемент расположен между молибденом (атомная масса 95, 92) и рутением (атомная масса 101,07). Следовательно, массовые числа стабильных изотопов этого элемента не должны выйти за пределы диапазона 96-102. Но все стабильные «вакансии» этого диапазона заняты. У молибдена стабильны изотопы с массовыми числами 96, 97, 98 и 100, у рутения- 99, 101, 102 и некоторые другие. Это значит, что у элемента № 43 не может быть ни одного нерадиоактивного изотопа. Несколько раз объявлялось об открытии элемента под номером 43, однако каждый раз это сообщение было ошибочным. В 1934 году немецкий физик Маттаух сформулировал правило, согласно которому можно установить наличие у элемента стабильных изотопов. Согласно этому правилу все изотопы элемента 43 должны быть радиоактивными. В 1937 году Э. Сегре и К. Перье в Палермо идентифицировали технеций в образце облученного в циклотроне молибдена дейтронами по реакции:

Элемент под №43 был назван технецием от греческого слова « технетос» (искусство), так это был первый искусственно полученный элемент. Поскольку молибден состоит из нескольких стабильных изотопов, то при его бомбардировке образуется несколько изотопов технеция:

; ; .

В дальнейшем технеций был получен с помощью других ядерных реакций, например

; ; .

В настоящее время технеций получают двумя путями. Один из них - облучение молибдена нейтронами в ядерном реакторе:

Период полураспада составляет 2,12·10 5 лет. При двухмесячном облучении 1 кг триоксида молибдена в реакторе с плотностью потока нейтронов 10 14 см -2 ∙с -1 образуется 10-15 мг технеция-99.

Второй путь- выделение технеция из продуктов деления урана, который и является теперь основным источником его получения. В реакторе мощностью порядка 1000 МВт в течение года накапливается около 9 кг Следовательно, он становится доступным материалом для технических целей.

В 1952- 53 г.г. спектральные линии технеция были обнаружены в спектрах Звезд. Судя по спектрам элемент № 43 распространен там не меньше, чем цирконий, ниобий, молибден, рутений, Это значит,что синтез элементов во Вселенной продолжается.

В земной коре образование технеция происходит в процессе спонтанного деления урана-235 и в результате ядерных реакций молибдена, ниобия и рутения, протекающих под влиянием космического излучения, нейтронов спонтанного деления урана и альфа-частиц, образующихся при распаде природных радиоактивных элементов. Содержание 99 Tc оценивается в 5∙10 -10 г на кг урана-235.

В настоящее время известно 20 изотопов и ядерных изомеров технеция с массовыми числами от 92 до 107 и с периодами полураспада от нескольких секунд до 2·10 6 лет. Наиболее важными из них являются изотоп и его ядерный изомер .

Элементарный технеций – металл серебристого цвета, относится к YII группе элементов Периодической системы Д. И. Менделеева. При низких температурах он обладает сверхпроводимостью.

Технеций относится к подгруппе марганца (Mn – Tc – Re). Химическая активность элементов подгруппы марганца уменьшается в рядуMn – Tc – Re. По химическим свойствам технеций ближе к рению, чем к марганцу. Как рений, так и технеций образует соединения со степенями окисления от +1 до + 7. Однако наиболее устойчивой и характерной степенью окисления технеция является +7. В низших степенях окисления технеций проявляет большее сходство с марганцем, а в высшей – с рением. Для технеция (V11) известны такие соединения как оксид Tc 2 О 7 , кислота НTcО 4 и ее соли. НTcО 4 представляет собой темно – красные гигроскопичные кристаллы, хорошо растворимые в воде. По силе технециевая кислота находится в ряду: НClО 4 > НMnО 4 > НTcО 4 >НReО 4 . Соли указанных кислот изоморфны. В этом же ряду уменьшается растворимость солей. Поэтому для них характерно образование трудно растворимых солей с такими катионами, как Cs + , Tl 3+ , [(C 6 H 5)As] + , [(C 6 H 5)P] + .

Для других степеней окисления технеция характерны реакции гидролиза, комплексообразования, которые играют важную роль в химии этого элемента.

Так как технеций содержится в продуктах деления урана и в молибденовых мишенях, важной задачей является отделение технеция от продуктов деления и от молибдена.

По степени эффективности методы выделения технеция можно расположить следующим образом: экстракционные > ионообменные > осадительные > дистилляционные > электрохимические. Например, для отделения технеция от продуктов деления могут быть использованы методы соосаждения с сульфидами тяжелых металлов и труднорастворимыми перхлоратами.После введения ClO в качестве носителя технеций осаждают хлоридом тетрафениларсония в виде [(C 6 H 5)As]TcO 4 , а затем очищают электрохимическим осаждением или дистилляцией в виде Tc 2 O 7 .

Для определения технеция используется радиометрический, активационный, спектрофотометрический, электрохимический игравиметрические методы. Весовыми формами технеция являются пертехнаты тетрафениларсония, гептасульфид. Применение технеция обусловлено как его уникальными свойствами, так и благоприятными ядерно-физическими характеристиками его основного изотопа (большой период полураспада, мягкое в – излучение). Обладая высокой коррозионной устойчивостью и малым сечением активации, технеций является перспективным материалом для антикоррозионных покрытий в реакторостроении . Пертехнат - ион в кислородсодержащих средах в при концентрации внесколько мг/ л является одним из сильнейших ингибиторов коррозии для стали. Сверхпроводимость технеция и его сплавов позволяет использовать их в качествеконструкционного материала для сверхпроводимых магнитов а также для изготовления высокотемпературных термопар. используют для приготовления в – источников, применяемых в радиографии и для проверки радиометрических и дозиметрических приборов. В медицине используется для диагностики болезней щитовидной железы, миокарда сердца, мозга, костей и урологических заболеваний. Для получения готовят изотопный генератор из , который адсорбируют из азотнокислого раствора на колонке из Al 2 O 3 , с последующим вымыванием технеция разбавленной азотной кислотой.

11.2 ПРОМЕТИЙ –

Предположение о существовании элемента с порядковым номером 61 было сделано еще Б. Браунером в 1902 г. Поиски этого элемента в природе были безуспешными. В соответствии с правилом Маттауха у ядер элемента с порядковым номером 61 не может быть стабильных изотопов, элемент радиоактивен. Впервые элемент с порядковым номером 61 был получен в 1938 г. М.Пулом и Л. Квилом облучением неодима дейтронами по ядерной реакции

Однако в этих работах химическое выделение не проводилось. Впервые прометий был выделен химически из продуктов деления урана в 1947 году Г. Маринским и Л. Гленденином с использованием ионообменного метода разделения редкоземельных элементов. Ученые, выделившие новый химический элемент назвали его в честь мифологического титана Прометея, похитившего огонь и передавшего его людям.

Обнаружить прометий в земной коре удалось только после того, как он был получен искусственным путем. В природе мог сохраниться только прометий-145, так как период его полураспада соизмерим со временем существования земной коры. В урановых рудах этот изотоп содержится в количестве 4.10 -15 мг на 1 г урана.

В настоящее время известно 22 изотопа и ядерных изомеров прометия, но наиболее доступным, имеющим практическое применение является (Т 1/2 = 2,7 года).

Основным источником получения является деление ядер урана-235. В ядерном реакторе на 100 кВт в сутки образуется 1 мг , что позволяет получать данный изотоп в килограммовых количествах.

Другим источником получения является реакция:

Является долгоживущим радиоактивным отравляющим веществом, образующимся при взрыве атомной бомбы.

Прометий входит в цериевую группу лантаноидов. Электронная конфигурация нейтрального атома прометия отвечает формуле 5f 5 6s 2 .

Ближайшие химические аналоги прометия – соседние с ним лантаноиды – неодим и самарий. По химическим свойствам весьма сходен с неодимом и другими лантаноидами. Прометий металл, Т пл. =1168,С 0 . В соответствии с положением в периодической системе единственной устойчивой степенью окисления прометия является +3. В чистом состоянии получены окись Pm 2 O 3 , хлорид PmCl 3, имеющий желтую окраску и нитрат Pm(NO 3) 3 розового цвета, а также оксалат Pm 2 (C 2 O 4) 3 ·10 Н 2 . Прометий, как и другие редкоземельные элементы, образует комплексные соединения с большим числом лигандов с координационными числами 7, 8, 9 и 12. Характер связи элемент – лиганд в основном ионный.

В крайне разбавленных растворах при рН < 3 прометий находится в ионном состоянии. При рН > 3 в результате гидролиза начинается образование радиоколлоидов. При рН 6-7 прометий сильно адсорбируется на стекле.

Важнейшими методами выделения прометия является ионообменная хроматография и экстракция. Для выделения прометия используются также процессы соосаждения, основанные на изоморфизме оксалатов и фторидов редкоземеньных элементов или на адсорбции прометия на оксидах и гидроксидах металлов. Из облученных материалов, продуктов деления урана и природных материалов прометий выделяется с фракцией редкоземельных элементов и иттрием, отделение от которых является основной задачей при получении и анализе прометия.

Наиболее распространенным методом определения является радиометрический метод. Он основан на измерении бета- активности препаратов .

Все области применения обусловлены его ядерно-физическими характеристиками (мягкое бета – излучение, Е max =0,2 МэВ, отсутствие г – фона, большой период полураспада, (1 г имеет активность около 940 Ки). используется для изготовления миниатюрных изотопных источников тока (атомных электрических батарей), в которых энергия в – излучения превращается в электрическую. Такие источники используются в космических исследованиях, в радиоизотопных стимуляторах сердечной деятельности, в слуховых аппаратах.

Рис. Атомная электрическая батарека на

Особенность в том, что он практически не дает гамма- лучей, а дает лишь мягкое в–излучение используется для изготовления изотопных ионизаторов для снятия электростатических зарядов. Как источник в – излучения прометий используется в приборах неразрушающего контроля для измерения толщины и плотности материалов небольшой толщины.

11.3 ПОЛОНИЙ

Элемент с порядковым номером 84 был предсказан в 1889 году Д. И. Менделеевым, а открыт М. Кюри при изучении аномальной радиоактивности урановых минералов. Элемент под № 84 был назван в честь родины Марии – полоний. Это первый элемент, вписанный в таблицу Д. И. Менделеева после открытия радиоактивности. Он же первый (по порядку атомных номеров) и самый легкий из элементов, не имеющих стабильных изотопов. Он же один из первых радиоактивных элементов, примененных в космических исследованиях.

Известно 6 природных изотопов, 20 радиоактивных искусственных изотопов и 9 изомера полония с массовыми числами от 192 до 218.

Наиболее важным изотопом полония является - член естественного радиоактивного ряда 238 U. Полоний в природе очень редок, он существует только как продукт радиоактивного распада в урановых, в которых образуется в результате распада урана-238:

U ............... (стаб.)

Именно с этим изотопом полония имели дело М. И П. Кюри. Таким образом, источником полония-210 может служить активный осадок радона, накапливающийся в старых радоновых ампулах. В равновесии с 1 г урана находится 7,6·10 -11 г Ро, а с 1 г Ra – 2,24·10 -4 г. Распространенность в земной коре равна 2·10 -14 масс.%.

В настоящее время получают в ядерном реакторе облучением висмутовой мишени нейтронами:

Bi (n, g) Bi Po

Более долгоживущий изотоп полония с массовым числом 209 и периодом полураспада 103 года можно получить путем облучения мишени из висмута-209 в циклотроне потоками протонов:

Химические и физические свойства полония исследованы с помощью химических микрометодов, так как исследования с большими количествами полония осложнены высокой удельной радиоктивностью полония (массовая активность составляет 1,7 ·10 14 Бк/г). Специфическим носителем при изучении поведения микроколичеств полония является теллур.

Полоний – серебристо – серый металл с желтоватым оттенком, напоминающий таллий и висмут, в темноте светится. Полоний легкоплавкий и легколетучий элемент с температурой плавления 254 0 С, кипения 962 0 С. На воздухе он быстро окисляется с образованием РоО 2 , взаимодействует с галогенами с образованием соединений типа РоГ 4 . Металлический полоний растворяется в азотной и соляной кислотах.

Электронная конфигурация полония в основном состоянии 4 f 14 5d 10 6s 2 6p 4 , поэтому стоит ожидать, что степени окисления этого элемента будут –2, +2, +4, +6.

Полоний – элемент главной подгруппы УI группы периодической системы. Наиболее устойчивой степенью окисления является +4. В электрохимическом ряду полоний занимает место между теллуром и серебром.

По химическим свойствам полоний сходен со своим аналогом по группе периодической системы теллуром, и отчасти – с висмутом.

Полоний дает изоморфные кристаллы с теллуратами свинца и калия.

В водных растворах полоний является сильнейшим коллоидообразователем, в области рН ≥ 1 все соли и комплексные соединения полония гидролизованы и образуют как истинные растворы, так и псевдоколлоиды.

В области рН = 7,5 соли полония дают истинные коллоиды и хорошо адсорбируются на стекле, бумаге.

Для отделения полония от компонентов активного осадка радона и от больших количеств облученного висмута применяют электрохимические методы, экстракцию, хроматографию и соосаждение . В лабораторной практике отделение полония от висмута осуществляется соосаждением с элементарным теллуром при их совместном восстановлении, а также с помощью бестокового осаждения, используя более положительное значение потенциала выделения полония по сравнению со свинцом, висмутом и теллуром.

Процесс экстракции полония из расплавленного висмута при 400-500 0 С с гидроксидом натрия в инертной атмосфере является технологическим способом извлечения его из облученного висмута.

Благодаря большому тепловыделению полоний в основном используют в качестве источника тепловой энергии в космических аппаратах. Недостатком полония-210 является относительно малый период полураспада, всего 138 дней, что уменьшает срок службы радиоизотопного источника тепла.

Полоний-210 находит применение в качестве наиболее доступного б – источника и для изготовления полоний – бериллиевых источников нейтронов с малой гамма - активностью. Благодаря большому тепловыделению полоний используется в качестве изотопного источника тепловой энергии в космических аппаратах.

При работе с полонием необходимо соблюдать особую осторожность. Пожалуй, это один из самых опасных радиоактивных элементов. Его активность так велика, что хотя он излучает только альфа-частицы, брать его руками нельзя, так как можно получить сильные ожоги кожи. Он легко проникает внутрь сквозь кожные покровы. Полоний опасен и на расстоянии, так как легко переходит в аэрозольную форму и заражает воздух. Поэтому работать с ним необходимо в герметичных камерах. Соблюдая эти условия, легко защититься от альфа- излучения полония.

11.4 АСТАТ

Д. И. Менделеев оставил в таблице клетку для элемента с порядковым номером 85.

В 1940 году Э. Сегре, К. Мак - Кензи и Д. Корсон на циклотроне Калифорнийского университета облучением мишени из висмута б – частицами получили искусственный элемент № 85:

или Bi (a,3n) At

Позднее было доказано, что астат образуется в семействах урана –235, 238, тория-232, но все они, являясь в- излучателями имеют очень короткие периоды полураспада. Астат наименее распространенный элемент на нашей планете. В земной коре оценивается содержание астата в 69 мг в слое 1,6 км.

Астат – в переводе с греческого языка означает нестабильный . Раньше его называли астатин, в настоящее время для стандартизации элемент называется астат.

Известно 24 изотопа астата с массовыми числами от 196 до 219. Наиболее важными из них являются долгоживущие изотопы - с периодами полураспада 8,3 и 7,2 часа соответственно. Астат не имеет долгоживущих изотопов. В связи с этим для изучения его химических свойств доступны лишь ультрамалые количества элемента. Как правило, исследования проводятся с концентрациями астата 10 -11 -10 -15 моль/л при массовой удельной активности 7.4·10 13 Бк/мг. Астат не имеет ни изотопных носителей, ни достаточно удовлетворительного специфического носителя.

Астат является наиболее тяжелым элементом группы галогенов. Свойства молекулярного астата напоминают свойства молекулярного йода, но как все тяжелые элементы обладает рядом металлических свойств. Нейтральный атом астата имеет электронную конфигурацию 4f 14 5f 10 6s 2 6p 5 .

Степени окисления –1, +1, +3, +5 и, вероятно, +7. Наиболее устойчива из них -1. Подобно висмуту и полонию, астат может образовывать радиоколлоиды и сорбироваться на стекле и других материалах.

В соответствии с методами получения астата его приходится отделять от больших количеств облученного висмута, урана, тория, а также продуктов деления. В облученной альфа-частицами висмутовой мишени практически не содержатся радиоактивные примеси других элементов. Поэтому основная задача выделения астата сводится к сбросу макроколичеств висмута из расплавленной мишени путем дистилляции. Астат по аналогии с иодом возгоняется, на чем основано его отделение от мишени. Астат при этом либо адсорбируется из газовой фазы на платине или на серебре, либо конденсируется на стекле, либо поглощается растворами сульфита или щелочи.

Единственный метод определения астата является радиометрический. Изотопы 209, 210, 211 At могут быть определены как по a- излучению, так и по g - или рентгеновскому К, L-излучению.

Элементарный астат хорошо растворим в органических растворителях, и с иодом в качестве носителя, легко ими экстрагируется. Коэффициент распределения у астата выше, чем у иода. При действии сильных окислителей (HСlO 4 , K 2 S 2 O 8 , НIO , и др.) в азотно - и хлорнокислых растворах астата образуется, очевидно, астат- ион AtO , который изоморфно соосаждается с AgIO 3 . В виде иона астатида At - изоморфно соосаждается с AgI и TlI. В организме астат ведет себя как йод (накапливается в щитовидной железе). На этом основано его использование в качестве радиофармацевтического препарата для лечения заболеваний щитовидной железы. Так как астат является альфа-излучателем, то его использование для этой цели предпочтительней, чем использование иода-131, который является источником жесткого бета-излучения. Выводится он из организма с помощью роданид-иона, дающего с астатом прочный комплекс.


11.5 РАДОН (86 Rn)

В 1899 г. М. Кюри обнаружила, что воздух вокруг соединений радия становится проводником электричества. Исследованиями процессов радиоактивного распада урана-238, тория-232 и урана-235 Р. Б. Оуэнс, У. Рамзай, Дж. Резерфорд и Ф. Дорн независимо друг от друга установили, что изотопы радия- 226 Ra , 224 Ra , 223 Ra в результате испускания a-частиц превращаются в изотопы элемента с порядковым номером 86-радон(222 Rn),торон (220 Rn ) , актинон(219 Rn). В общем случае для этого элемента принято название радон по его наиболее долгоживущему изотопу 222 Rn с Т 1/2 =3,8 дня. Благодаря тому, что уран, торий и радий широко распространены в природе(рудах, почве, воде) радон содержится в почве и земной атмосфере.

Кроме естественных изотопов радона в настоящее время получено искусственно еще более 10 короткоживущих изотопов с массовыми числами от 202 до 224. Основными методами получения искусственных изотопов радона являются реакции глубокого расщепления, протекающие при облучении ториевых мишений протонами высоких энергий.

Определение молекулярной массы радона показало, что он является одноатомным газом.

Радон самый тяжелый элемент нулевой группы. Радон бесцветен, сжижается в фосфоресцирующую жидкость с температурой кипения-61,8 0 С, затвердевающую при -71 0 С. Твердый радон светится ярко-голубым цветом, который сравнивают с электрическим.

Исследования химических свойств радона показали, что радон и его изотопы являются химическими аналогами инертных газов . Его электронная конфигурация 5s 2 5p 6 5d 10 6s 2 6p 6 , т.е. его внешние электронные уровни полностью заполнены, что и определяет инертность радона. В то же время, несмотря на то, что радон принадлежит к группе инертных газов, он образует вполне определенные группы соединений. Так, радон образует клатратные соединения с водой, фенолом, толуолом и т. п. В клатратных соединениях радона связь осуществляется за счет ван-дер-ваальсовых сил.

Радон, подобно другим инертным газам, при действии сильных окислителей, например, жидкого фтора, фторидов, О 2 F 2 , при определенных условиях образует фториды-RnF 2 , а также комплексные ионы типа RnF ×MeF 6 , RnF 2 ×2Sb F 5 , RnF 2 ×2Bi F 5 и RnF 2 ×I F 5 .

Радон получают накоплением при распаде радия, находящегося в растворе в специальной вакуумной аппаратуре.

Исторически первым и наиболее распространенным методом является радиометрический метод определения радона по радиоактивности продуктов его распада. 222 Rn может быть определен и непосредственно по интенсивности собственного альфа- излучения. Удобным методом определения радона является его экстракция толуолом с последующим измерением активности толуольного раствора с помощью жидкостного сцинтилляционного счетчика.

Основная область применения радона - медицина. Радон применяют для получения искусственных радоновых ванн при лечении ревматизма, радикулита, сердечно-сосудистых, кожных и ряда других заболеваний.

Радон нашел также применение в методах неразрушающего контроля для определения утечки трубопроводов, для исследования скорости движения газов и т. п.

Так как радон чрезвычайно опасен при попадании внутрь организма, все процедуры желательно осуществлять в специальных условиях, предотвращающих возможность попадания его в дыхательную систему. Опасен не сам радон, а продукты его распада. Все исследователи, работавшие с твердым радоном, подчеркивают непрозрачность этого вещества. Причина непрозрачности- моментальное осаждение твердых продуктов распада радона, которые являются б-, в-,г – излучателями. В то же время лечебный эффект радона обусловлен не самим радоном, а благодаря налету на теле продуктов его распада.

Применительно к радону эпитет « самый» можно повторять многократно: самый тяжелый, самый редкий, самый дорогой из всех известных газов на Земле.

11.6 ФРАНЦИЙ (87 Fr)

Среди элементов, стоящих в конце периодической системы Д. И. Менделеева, есть такие, о которых многое слышали и знают неспециалисты, но есть и такие, о которых мало, что сможет сказать и специалист. К числу первых относятся, например, радий и радон. К числу вторых - их сосед по периодической системе - франций. В 1879 году Менделеев на основе созданной им периодической системы предсказал существование и описал свойства наиболее тяжелого щелочного элемента-экацезия.

Лишь в 1939 г. Маргарита Перей, ученица Марии Складовской-Кюри открыла элемент с порядковым номером 87, химически выделив его из продуктов распада ряда 235 U. Он образуется при б- распаде Ac. М. Перей назвала этот элемент в честь своей родины францием (Fr):

Из продуктов распада актиния, франций был выделен путем соосаждения с перхлоратом цезия. В природе франций в ничтожных количествах содержится во всех урановых рудах (1 атом Fr на 7,7×10 14 атомов 235 U или 3×10 18 атомов природного урана).

В астоящее время известно 27 изотопов франция с массовыми числами от 203 до 229, из них два изотопа с массовыми числами 223 и 224 встречаются в природе, являясь членами радиоактивных семейств 235 U и 232 Th. Из всех известных изотопов франция представляет интерес только 223 Fr, как наиболее долгоживущий (период полураспада 22 мин.).

Кроме выделения из продуктов распада актиния, 223 Fr получают путем облучения 226 Ra нейтронами по схеме:

226 Ra(n,g) 227 Ra 227 Ac 223 Fr

Франций интересен по двум причинам: во-первых, это самый тяжелый и самый активный щелочной металл; во-вторых, франций можно считать самым неустойчивым из первых ста элементов периодической системы. Нейтральный атом франция в основном состоянии имеет электронную конфигурацию7s 1 . Единственной степенью окисления франция является +1.

Франций не может быть выделен в весомых количествах, так как периоды полураспада всех известных в настоящее время его изотопов слишком малы. У самого долгоживущего изотопа франция- 223 Fr- период полураспада составляет всего 22 мин.

Согласно положению в периодической системе элементов, франций – один из самых электроположительных металлов. В химическом отношении франций - самый ближайший аналог цезия. Отсюда следует, что все характерные для цезия химические формы должны существовать и у франция. Большинство солей франция хорошо растворимо в воде. К трудно растворимым солям относятся перхлорат, хлороплатинат, пикратокобальтинитрит и некоторые другие соли, которые изоморфно соосаждаются с аналогичными солями цезия. Будучи самым активным щелочным металлом, франций проявляет пониженную способность к комплексообразованию и гидролизу.

Находясь в растворе в ультрамикроконцентрациях (10-9-10-13 г), франций может легко «потеряться», адсорбируясь на стенках сосудов, на поверхности осадков, на возможных примесях.

Поскольку франций не может быть получен в весомых количествах, его физико-химические характеристики найдены расчетным путем.

Химические свойства франция изучены только радиохимическими методами с использованием цезия в качестве специфического носителя. Массы франция в этих опытах не превышают 10 -15 г (массовая активность 223 Fr составляет 1,7 ·10 15 Бк/мг). Достаточно сложной проблемой является отделение франция от специфического носителя цезия. В соответствии с положением в периодической системе, франций должен иметь более отрицательный стандартный потенциал, чем цезий. Поэтому он может быть выделен только на ртутном катоде .

Франций легко адсорбируется на ионообменных смолах КУ-1 и Дауэкс-50 (сульфокатионитах) из нейтральных или слабокислых растворов. С помощью этих смол франций легко отделяется от большинства химических элементов.

Применяют франций в медицине и биологии при изучении распределения щелочных металлов в организме. Фиксируется он в основном в злокачественных опухолях, что делает его перспективным в ранней диагностике сарком.

11.7 РАДИЙ (88 Ra)

Элемент № 88 был открыт Марией и Пьером Кюри в 1898 г вслед за полонием в минерале, известном под названием урановой смолки. М. Кюри обнаружила, что интенсивность излучения смоляной руды в несколько раз сильнее, чем U 3 O 8 , полученный из металлического урана. Кюри было предположено, что руда содержит неизвестное вещество с более интенсивным излучением, чем уран. Было обнаружено, что фракции содержащие сульфид висмута и сульфат бария, обладают радиоактивностью. Это подтверждало предположение, что новый элемент является аналогом бария. В дальнейшей работе с помощью дробной кристаллизации хлористого бария, было выделено 90 мг хлорида радия высокой чистоты. Новый химический элемент с порядковым номером 88 был назван супругами Кюри радием (radius-луч).

В настоящее время известно 13 изотопов радия, из них три являются членами естественных радиоактивных семейств. Наиболее долгоживущим из природных изотопов радия является изотоп 226 Ra с периодом полураспада1622 года. 226 Ra является a-g- излучателем и содержится во всех рудах урана. В 1 т урановой смоляной руды содержится около 400 мг 226 Ra. В верхнем слое Земной коры толщиной 1,6 км содержится 1,8×10 7 т 226 Ra. Довольно много радия в некоторых природных водах – до 10 -8 г/л. В мировом океане содержится около 2·10 4 т радия.

Свежеполученный металлический радий - белый блестящий металл, темнеющий на воздухе с Ткип.=1140 С 0 и Тпл.=960 С 0 . Впервые металлический радий был получен М. Кюри и А. Дебьерном выделением на ртутном катоде при электролизе раствора RaCl 2 с последующим разложением амальгамы радия в токе водорода при нагревании до 700 С 0 .

Радий представитель щелочно-земельных металлов и является самым тяжелым металлом главной подгруппы 11 группы периодической системы. Единственной степенью окисления радия является +2. По своим химическим свойствам радий похож на барий, но химически более активен. Он энергично разлагает воду, давая гидроокись Ra(OH) 2 , более растворимую, чем Ва(ОН) 2 .

Ra +2Н 2 О= Ra(OH) 2 + Н 2

Наиболее важными соединениями радия являются его галогениды: хлорид и бромид. Все соли радия и бария изоморфны. Все свежеприготовленные соли радия имеют белый цвет с характерным голубым свечением в темноте. Химия радия в водных растворах исследована с использованием микроколичеств этого элемента из-за его большой массовой радиоактивности (радиоактивность 1 г радия составляет 3,7×10 10 Бк). Радий в растворах находится в виде ионов Ra 2+ . В ряду щелочно – земельных металлов радий проявляет наименьшую склонность к комплексообразованию и гидролизу.

Радий обладает большой склонностью к сорбции из растворов на поверхности стеклянной посуды, фильтровальной бумаги, что затрудняет определение его физико-химических констант (например, растворимость солей радия). Радий образует комплексы с лимонной, молочной и винной кислотами.

Основная проблема при выделении радия из урановых руд состоит в отделении его от больших количеств урана и продуктов распада радия. Кроме методов сокристаллизации с изоморфными солями бария и свинца, для выделения радия используется хроматографические и экстракционные методы. Перспективным для выделения радия является использование неорганических неспецифических сорбентов, таких как Al 2 O 3.

Радий сыграл огромную роль в исследовании строения атомного ядра, явления радиоактивности и становлении радиохимии и ядерной физики. Можно утверждать, что если бы 100 лет назад не был бы открыт элемент радий, то вряд ли прошлый век называли бы атомным. За открытие явления радиоактивности и радия Марии Склодовской - Кюри была дважды присуждена Нобелевская премия (первый раз по физике-1903 г., второй - по химии-1911 г.).

Основные области применения радия обусловлены его g-излучением в методах неразрушающего контроля для определения дефектов литья, в толщиномерах, при разведке месторождений урана. Альфа излучение радия позволяет использовать его для производства светящихся красок и для снятия статических зарядов. В смеси с бериллием радий используют для изготовления нейтронных источников. В медицин е радий используют как источник радона . Радий обладает большой подвижностью в природе и довольно сильно может выщелачиваться из горных пород. Поэтому большинство урановых минералов теряет значительную часть радия (иногда эти потери составляют до 85%), который легко попадает в природные воды.


11.8 АКТИНИЙ (89 Ас) И АКТИНОИДЫ

1899 году сотрудник Кюри Дебьерн в отходах от переработки урановых руд обнаружил новое радиоактивное вещество. При химико-аналитическом разделении это радиоактивное вещество осаждалось аммиаком вместе с редкоземельными элементами и торием. Радиоактивность была приписана новому радиоактивному элементу, который был назван актинием(излучающий) . В настоящее время известно 24 изотопа актиния, три из них встречаются в природе( Ac , Ac Ac). Остальные изотопы получены искусственным путем.

Таблица Радиоактивные свойства некоторых изотопов актиния:

Изотоп актиния Реакция получения Тип распада Период полураспада
221 Ac 232 Th(d,9n) 225 Pa(б)→ 221 Ac б <1 сек.
222 Ac 232 Th(d,8n) 226 Pa(б)→ 222 Ac б 4,2 сек.
223 Ac 232 Th(d,7n) 227 Pa(б)→ 223 Ac б 2,2 мин.
224 Ac 232 Th(d,6n) 228 Pa(б)→ 224 Ac б 2,9 час.
225 Ac 232 Th(n,г) 233 Th(в -)→ 233 Pa(в -) → 233 U(б)→ 229 Th(б)→ 225 Ra(в -) 225 Ac б 10 сут.
226 Ac 226 Ra(d,2n) 226 Ac б или в - или электронный захват 29 час.
227 Ac 235 U(б)→ 231 Th(в -)→ 231 Pa(б)→ 227 Ac Ra (n,g) Ra → Ac б или в - в - , б 21,7 лет 22 года
228 Ac 232 Th(б)→ 228 Ra(в -)→ 228 Ac в - 6,13 час.
229 Ac 228 Ra(n,г) 229 Ra(в -)→ 229 Ac в - 66 мин.
230 Ac 232 Th(d,б) 230 Ac в - 80 сек.
231 Ac 232 Th(г,p) 231 Ac в - 7,5 мин.
232 Ac 232 Th(n,p) 232 Ac в - 35 сек.

Есть одна причина, по которой элемент № 89 – актиний – особенно интересует сегодня многих. Этот элемент, подобно лантану, оказался родоначальником большого семейства элементов, в которое входят все три кита ядерной энергетики – уран, плутоний и торий .

Главный и долгоживущий изотоп актиния - Ac (период полураспада 22 года) является дочерним продуктом 235 U. В урановых рудах актиний содержится в микроконцентрациях.В равновесии с 1 природного урана находится ~ 10 -10 г Ac. Актиний может быть выделен из урановых и ториевых руд путем осуществления кислотного разложения руды с последующим разделением и выделением продуктов распада урана и тория и отделения актиния от примесей с лантаноидами. От лантана актиний может быть отделен хроматографически на катионите в аммонийной форме . Актиний хорошо отделяется от лантана методом электрофореза . Количество получающегося актиния настолько мало , что этот элемент входит в десятку редчайших элементов.

Из – за очень малого содержания актиния в рудах его предпочитают получать искусственным путем, Изотоп 227 Ac получают облучением радия мощным потоком нейтронов в реакторе:

Ra (n,g) Ra → Ac

Именно этим путем получены чистые препараты актиния, на которых и были определены его основные свойства. Выход, как правило, не превышает 2.15% от исходного количества радия. Количество актиния при данном способе синтеза исчисляется в граммах. От радия и дочерних продуктов распада актиний отделяют после растворения мишени в НСl довольно просто – экстракцией в раствор тиофенилкарбонила - трифторацетона в хлороформе при рН~3,6. Далее актиний осаждают в виде Ac 2 (С 2 О 4) 3, растворяют в соляной кислоте и плавиковой кислотой переводят в AcF 3 . Затем в вакууме при 1200 0 С полученную соль восстанавливают металлическим литием до металла. Выделение и очистка актиния от радия, тория и дочерних продуктов распада проводятся методами экстракции и ионного обмена.

Металлический актиний получают восстановлением трифторида актиния парами лития

Элементарный актиний довольно тяжелый серебристо-белый металл, который легко окисляется на воздухе с образованием пленки оксида, предохраняющей металл от дальнейшей коррозии. Актиний- элемент третьей группы периодической системы. Его ближайшим химическим аналогом является лантан . У него, как и у лантана такая же валентность (+ 3), близкиие атомные радиусы (1,87 нм у лантана и 2,03 нм у актиния), почти идентичное строение большинства соединений. Актиний подобно лантану химически активный элемент, быстро окисляющийся на воздухе. В то же время он имеет более основные свойства, чем лантан. В кислых растворах актиний присутствует в виде ионов. При рН>3 образуются коллоидные растворы. В микроконцентрациях актиний соосаждается гидроокисями иттрия, алюминия, железа.

Применение актиния

227 Ac в смеси с бериллием является источником нейтронов. Ac-Be-источники характеризуются малым выходом гамма-квантов, применяются в активационном анализе при определении Mn, Si, Al в рудах.

225 Ac применяется для получения 213 Bi, а также для использования в радио-иммунотерапии.

227 Ac может использоваться в радиоизотопных источниках энергии.

228 Ac применяют в качестве радиоактивного индикатора в химических исследованиях из-за его высокоэнергетического в-излучения.

Смесь изотопов 228 Ac- 228 Ra используют в медицине как интенсивный источник г-излучения.

Актиний относится к числу опасных радиоактивных ядов с высокой удельной б-активностью. Хотя абсорбция актиния из пищеварительного тракта по сравнению с радием сравнительно невелика, но наиболее важной особенностью актиния является его способность прочно удерживаться в организме в поверхностных слоях костной ткани. Первоначально актиний в значительной степени накапливается в печени, причём скорость его удаления из организма много больше скорости его радиоактивного распада. Кроме того, одним из дочерних продуктов его распада является очень опасный радон, защита от которого при работе с актинием является отдельной серьёзной задачей.

Актиний сыграл огромную роль в знаменитой актиноидной теории Г. Сиборга, предложенной в 1944 г. В соответствии с этой теории элементы с порядковыми номерами 90-103 образуют 5f –семейство и по аналогии с лантаноидами размещаются в периодической системе в виде отдельной группы . По своему химическому поведению актиноиды занимают промежуточное положение между элементами f - и d- серий. Сюда входят - торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, энштейний, фермий, менделеевий, нобелий, лоуренсий.

Таблица Наиболее важные изотопы актиноидов

Изотоп Период полураспада Изотоп Период полураспада Изотоп Период полураспада
227 Ac 22 года 244 Pu 7,6×10 7 лет 248 Bk 314 суток
232 Th 1,39×10 10 лет 241 Am 458 лет 251 Cf 660 лет
231 Pa 34300 лет 241 Am 433 года 254 Es 280 суток
233 U 1,62×10 5 лет 243 Am 7600 лет 253 Es 20,47 сут
235 U 7,13×10 8 лет 242 Cm 162,5 суток
238 U 4,5×10 9 лет 244 Cm 19 лет
235 Np 410 сут 247 Cm ³4×10 7 лет
237 Np 2,2×10 6 лет 248 Cm 4,7×10 5 лет
238 Pu 86,4 года 250 Cm 2×10 4 лет
239 Pu 24360 лет 247 Bk 1300 лет
242 Pu 3,79×10 5 лет

Согласно теории всего в слое 5f может находиться 14 электронов. Следовательно,103-й элемент должен быть последним актиноидом, так как у него будут полностью застроены уровни 5f, 6s и 6p. С другой стороны, следует ожидать, что 104-й элемент будет находиться в состоянии 6d 2 7s 2 , т.е. относиться к четвертой группе системы Менделеева, следовательно, по своим свойствам он должен быть похож на торий.

  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 15 страница
  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 16 страница
  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 17 страница
  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 18 страница
  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 19 страница