Сдвиг фаз напряжения и тока. Сдвиг по фазе

Часть 1. Озарение как сдвиг по фазе.

Часть 2. Вирус лжи.

Часть 3. Псевдосфера Лобачевского.

Часть 4. Иммунитет.

Часть 1. Озарение как сдвиг по фазе.

Озарение или инсайт - особое состояние психики человека в определенный период времени,который опасен тем,что из него можно не выйти. Что же происходит в сознании человека в таком состоянии с точки зрения науки? Отвечаю: сдвиг по фазе. Рассмотрим этот вопрос. Термин ФАЗА - от греческого PHASIS - появление,согласно энциклопедическому словарю,употребляется в следующих значениях: 1.Определенный момент в ходе развития (фаза колебаний,в том числе и гармоничных). 2.Однородная по химическому составу и физическим свойствам часть термодинамической системы,отделенная от других частей (фаз),имеющих иные свойства,границами раздела,на которых происходит изменение свойств. Разность фаз - это разность амплитуд световых волн,на которую реагирует глаз. Сдвиговая волна - это поперечная упругая волна (магнитная),распространяющаяся в теле и вызывающая деформацию сдвига,смещение частиц в которой перпендикулярны направлению её распространения. Представим вертикальную синусоиду-змейку,которую настигла поперечная змея,двигающаяся с большей скоростью и с другими параметрами волн. Вертикальная - изменит направление,амплитуду и частоту своих колебаний и характер движения. Вот,собственно,об этом явлении в сфере нашего сознания,которое можно назвать ПСЕВДОСФЕРОЙ,и предлагаю поговорить.

Есть такое дерево,называется мирроносица,из которого добывают мирру,ароматическую смолу,путем подсочки в чарку. Обломанная ветвь открывает доступ к соку дерева. Нашедший такое дерево привязывал к сломанной ветке пустую чарку и,высоко подняв ветвь над головой,возвращался в селение. Сельчане издали видели,что древнее дерево,источник мудрости,найдено,и говорили: "А вот и мирроносица идет!" Считается,что мирра даёт сознанию правильный настрой,нужный ЛАД. Можно сказать "лад дан",ЛАДАН,лад мудрости,прочный,как ферма,ferma - опорная конструкция в строительстве и технике,а в плазме крови - fermentum,ферменты,закваска,катализаторы обмена веществ организма в каждой его клеточке. Это белки или комплемент (дополнение),набор иммунных белков. Комплементарность есть взаимное соответствие в химическом строении двух молекул,обеспечивающее их взаимодействие,спаривание двух нитей ДНК,соединение фермента с субстратом,антигена с антителом. Комплементарные структуры подходят друг другу,как ключ к замку. Или: комплементация - это взаимодействие двух мутантных форм одного гена или разных генов одного набора хромосом,приводящее к формированию нормального фенотипа - результата взаимодействия наследственных свойств (генотипа) и условий среды обитания (приобретенной наследственности).

Теперь рассмотрим конкретно,что происходит с сознанием человека,с состоянием его психики,когда он просит Бога о спасении и,вдруг,получает НЕЧТО. Мозг от неожиданности,так скажем,от внедрения в его сферу чуждых ему параметров колебаний и под их воздействием начинает демонстрировать человеку спаривание двух нитей ДНК с помощью образов-видений или других символов,знакомых его хозяину,соответствующих по действию,доступных пониманию и схожих,аналогов.Однако эти аналоги вводят ум в заблуждение. Человек видит,к примеру,половой акт,спаривание,принимает виртуальную информацию за действительность,за наказание,за наваждение,за что угодно,но никак не за демонстрацию процессов изменений в системе его организма. Попав под воздействие сдвига фаз,человек впадает в погрешность (грешит),в ошибку,в заблуждение (заблудшая овца),или в эйфорию от прельщения,принимая такую доброжелательную трактовку спаривания молекул и частиц за форму сожительства мужчины и женщины,акта совокупления,любовь,в чём участвуют непосредственно половые органы,подходящие друг другу как ключ к замку,антиген к антителу. Однако вспомним переводы однокоренных слов от основы "fallos". На английском языке,например,fall означает падение,падаль,дурно пахнущий,а fallacy - ложное заключение (тюрьма),ошибка,гибель. Латинское слово fallo - фальсификация,лжепророк,подлог,мнимый и т.д. Один из переводов этого слова - серый скворец,что по индусской мифологии - ракша,сизый удод (сизоворонка,зимородок) - сын Люцифера,злой демон.Вот и добрались до сути. Если человек поймет свои заблуждения и страх перед отражением,эхом-резонансом сознания на пришедшее НЕЧТО,то выберет другой стиль общения с ним,без фамильярностей и панибратства,тем более,любовных отношений. А это значит - получай защитный иммунитет от лукавого раздела подсознания,сознания,ума своего - устойчивую реакцию противления злу,неподчинения его законам.

Часть 2. Вирус лжи.

Озарение. Как там в нём,хорошо живется? Настоящее оно или ложное? Любое - надо постараться выйти из него с достоинством. Вампир не нужен нашему уму,нужна сообразительность и смелость отрицать отрицательное,ложное,как,впрочем,и в жизненных ситуациях,основываясь на опыте,памяти,на правомерности ценить свое мнение,если убежден в его правильности. Войти в заблуждение - это можно отнести к привычкам прошлого,что надобно ломать: обломанная ветвь откроет путь к знаниям. Не имеем права деградировать и дать себя дегенерировать вирусу лжи. Святая доверчивая простота губительна,хоть и является частью сферы,но какой сферы? И СФЕРА,и ПСЕВДОСФЕРА - обе функции сознания. Вспомним,в каком состоянии мы просили у Бога помощи: депрессия,постоянная предельная истощаемость,расслабленность и слабость,беспомощность,страх за будущее,по-научному - ПРОСТРАЦИЯ. А коли мы в прострации,то сдвиговый эффект,в первую очередь,уж извините за грубое словцо - рифмуется оно,напрашивается,обязан дать нам и даст... опорожниться от всей галиматьи,что накопили в себе. Вот и на будущее - регулярно надо очищаться. Освобождение или избавление (лат. immunitas) дадут нам иммуноглобулины,белки,обладающие активностью антител,коротковолновым электромагнитным гамма-излучением при распаде,в результате взаимодействия их с антигенами. В физике это называется ТОРМОЗНОЕ ИЗЛУЧЕНИЕ,обращающее негатив в позитив и изменяющее направление распространения чуждого разуму волнового фронта. Самый лучший тормоз - исповедь,но такая,когда не подозреваешь,что исповедуешься,когда всем своим существом выражаешь искреннее возмущение или радость. Непосредственность,горячность,злость,гордость - всё должно работать,кроме эйфории,этакого довольства,не соответствующего объективным условиям жизни,в том числе и самообмана от самовнушения. СОВЕСТЬ ЛУЧШИЙ УНИВЕРСИТЕТ. Отрицайте,говорите: это не верно! Отрицание - необходимый момент процесса развития,как и сопротивление,необходимое условие изменения объекта,при котором некоторые элементы не уничтожаются,но сохраняются в новом качестве. Это и есть СНЯТИЕ (порчи),категория,введенная Г.Гегелем,а не колдунами или ведьмами. Снятие порчи,мы говорим,а чего же ещё?

Часть 3. Псевдосфера Лобачевского.

Самое время обратиться к геометрии Лобачевского и взглянуть,как выглядит ПСЕВДОСФЕРА,одна из функций нашего сознания геометрически,наглядно. Так ли страшен чёрт,как его рисуют? Если СФЕРА - замкнутая поверхность,все точки которой одинаково удалены от центра,ШАР,или СФЕРОИД - сжатый эллипсоид,то псевдосфера - это поверхность,образуемая вращением трактрисы вокруг её оси,где ТРАКТРИСА - плоская трансцендентная кривая,зависшая,можно сказать,а не выпуклая,по отношению к осям координат. Выглядит это,как колпак шута (шутка).

ТРАКТРИСА - от латинского корня TRACT (TRACTUM,TRACTO,TRAHO) - трактовка,трактовать; ну и,естественно,тракт - это путь,дорога,кредо; тяга,зависимость,влечение,склонность; изучать,исследовать,обсуждать,вести переговоры; занятие искусством,ведение дела; защищать,отстаивать,знать и уметь,хорошо владеть - как теоретические,так и практические познания; поступки,гостеприимство; втягивание в себя,глотать,впитывать; течение,ход,движение,поток,плавность; росчерк,черта; полоса,вереница,ряд,след,расположение,протяжение,местность; затяжной характер,обстоятельства и т.д.и т.п. Приобретенная наследственность? Однако есть и другие варианты переводов: в худшую сторону,требовать повиновения и благодарности,выводить из себя,издеваться т.д. и т.п. Но слово ТРАКТ-РИСА имеет и второй корень - RIS,что переводиться - смеяться,смех,шутка,юмор,комедийный жанр.Стало быть,трактриса это трагикомедия. А термин ТРАНСЦЕНДЕНТНАЯ означает - ВЫХОЖУ ЗА ПРЕДЕЛЫ (лат.TRANSCENDO),то есть,функция,не являющаяся алгебраической. Как видим,никто не лишает нас права выбора,трактовки и,соответственно,поступков,пусть даже в виртуальном мире. Этапы нашей зрелости соотносятся с пятью стихиями: женское-мужское,пассивное-активное,холодное-горячее и т.д. Это универсальные полярные космические и постоянно переходящие друг в друга силы: дерево-огонь - ЯН,мужское начало,активное (частота колебаний,звук); ЗЕМЛЯ - нейтральна; металл-вода - ИНЬ,пассив,информация,женское начало (шаг,длина волны,цвет). Приведу примеры,какой цвет соответствует определенным действиям. Бордовый - огласка,публичность. Красный - оперативное вмешательство,прибыль,работа. Оранжевый - обряд,ритуал,слово. Жёлтый - исполнение желаемого. Зелёный - оперативно,срочно,постоянная жизненная сила. Голубой - воздействие,творчество. Синий - уму-разуму дорога,труд и его цена. Фиолетовый - хорошо,защита. В каждой конкретной ситуации есть конкретная цель. Смело и уверенно,доверяя себе,позитивно и обратимо работайте,пускайте привод в действие,управляйте информацией,на то и разум дан.

Часть 4. Иммунитет.

Литература: 1.Советский энциклопедический словарь.- Изд.4-е.- М.: Сов.энциклопедия,1987. 2.Латинско-русский словарь,М.:Русский язык медиа,2006. 3.Англо-русский и немецко-русский словари.

Сдвиг фаз является величиной безразмерной и может измеряться в радианах (градусах) или долях периода. При неизменном, в частности нулевом сдвиге фаз говорят о синхронности двух процессов, или о выполненной синхронизации двух источников переменных величин.

Фазой (фазовым углом) называется угол \varphi = 2 \pi \frac {t} {T} , где T - период , t - доля периода смещения по фазе при наложении синусоид друг на друга. Так что если кривые (переменные величины - синусоиды: колебания , токи) сдвинуты по отношению друг к другу на четверть периода, то мы говорим, что они смещены по фазе на \frac {\pi} {2} ~ (90^\circ) , если на восьмую часть (долю) периода - то, значит, на \frac {\pi} {4} и т. д.
Когда идёт речь о нескольких синусоидах, сдвинутых по фазе, техники говорят о векторах тока или напряжения . Длина вектора соответствует амплитуде синусоиды, а угол между векторами - сдвигу фаз. Многие технические устройства дают нам не простой синусоидальный ток , а такой, кривая которого является суммой нескольких синусоид (соответственно, сдвинутых по фазе).

Наведённая во вторичных обмотках трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмоток трансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

Напишите отзыв о статье "Сдвиг фаз"

Примечания

См. также

Отрывок, характеризующий Сдвиг фаз

Всё время обеда Анна Михайловна говорила о слухах войны, о Николушке; спросила два раза, когда получено было последнее письмо от него, хотя знала это и прежде, и заметила, что очень легко, может быть, и нынче получится письмо. Всякий раз как при этих намеках графиня начинала беспокоиться и тревожно взглядывать то на графа, то на Анну Михайловну, Анна Михайловна самым незаметным образом сводила разговор на незначительные предметы. Наташа, из всего семейства более всех одаренная способностью чувствовать оттенки интонаций, взглядов и выражений лиц, с начала обеда насторожила уши и знала, что что нибудь есть между ее отцом и Анной Михайловной и что нибудь касающееся брата, и что Анна Михайловна приготавливает. Несмотря на всю свою смелость (Наташа знала, как чувствительна была ее мать ко всему, что касалось известий о Николушке), она не решилась за обедом сделать вопроса и от беспокойства за обедом ничего не ела и вертелась на стуле, не слушая замечаний своей гувернантки. После обеда она стремглав бросилась догонять Анну Михайловну и в диванной с разбега бросилась ей на шею.
– Тетенька, голубушка, скажите, что такое?
– Ничего, мой друг.
– Нет, душенька, голубчик, милая, персик, я не отстaнy, я знаю, что вы знаете.
Анна Михайловна покачала головой.
– Voua etes une fine mouche, mon enfant, [Ты вострушка, дитя мое.] – сказала она.
– От Николеньки письмо? Наверно! – вскрикнула Наташа, прочтя утвердительный ответ в лице Анны Михайловны.
– Но ради Бога, будь осторожнее: ты знаешь, как это может поразить твою maman.
– Буду, буду, но расскажите. Не расскажете? Ну, так я сейчас пойду скажу.
Анна Михайловна в коротких словах рассказала Наташе содержание письма с условием не говорить никому.
Честное, благородное слово, – крестясь, говорила Наташа, – никому не скажу, – и тотчас же побежала к Соне.
– Николенька…ранен…письмо… – проговорила она торжественно и радостно.
– Nicolas! – только выговорила Соня, мгновенно бледнея.
Наташа, увидав впечатление, произведенное на Соню известием о ране брата, в первый раз почувствовала всю горестную сторону этого известия.
Она бросилась к Соне, обняла ее и заплакала. – Немножко ранен, но произведен в офицеры; он теперь здоров, он сам пишет, – говорила она сквозь слезы.
– Вот видно, что все вы, женщины, – плаксы, – сказал Петя, решительными большими шагами прохаживаясь по комнате. – Я так очень рад и, право, очень рад, что брат так отличился. Все вы нюни! ничего не понимаете. – Наташа улыбнулась сквозь слезы.

Единицами измерения фазового сдвига являются радиан и градус:

1° = π/180 рад.

В каталоговой классификации электронные измерители разности фаз и группового времени запаздывания обозначаются следующим образом: Ф1 - образцовые приборы, Ф2 - фазометры, ФЗ - измери­тельные фазовращатели, Ф4 - измерители группового времени запаз­дывания, Ф5 - измерители корреляции.

Электромеханические фазометры на лицевой панели имеют знак ∆φ.

Фаза характеризует состояние гармонического процесса в данный момент времени:

u (t ) = U m sin (ωt + φ).

Фазой называется весь аргумент синусоидальной функции (ωt + φ). Обычно измерение ∆φ производится для колебаний одной и той же частоты:

u 1 (t ) = U m sin (ωt + φ 1);

u 2 (t ) = U m sin (ωt + φ 2).

В этом случае фазовый сдвиг

∆φ = (ωt + φ 1) - (ωt - φ 2) = φ 1 - φ 2 (5.10)

Для упрощения принимают начальную фазу одного колебания за нуль (например φ 2 = 0), тогда ∆φ = φ 1 .

Приведенное понятие фазового сдвига относится только к гармо­ническим сигналам. Для негармонических (импульсных) сигналов применимо понятие временного сдвига (время задержки t 3 ),диаграм­мы которого приведены на рис. 5.6.

Рис. 5.6. Диаграммы напряжений с временным сдвигом

Измерение фазового сдвига широко используется на промышлен­ных и сверхвысоких частотах, т.е. во всем диапазоне частот.

Фазовый сдвиг возникает, например, между входным и выходным напряжениями четырехполюсника, а также в силовых цепях перемен­ного тока между током и напряжением и определяет коэффициент мощности (cos φ), следовательно, и мощность в исследуемой цепи.

Для измерения фазового сдвига на промышленных частотах ши­роко используют электромеханические фазометры электродинамиче­ской и ферродинамической систем. Недостатками таких фазометров являются сравнительно большая потребляемая мощность от источни­ка сигнала и зависимость показаний от частоты. Относительная при­веденная погрешность электромеханических фазометров - не более ±0,5%.

В зависимости от требуемой точности измерения фазового сдвига и частоты сигнала применяют один из следующих методов: осциллографические (один из трех), компенсационный, электронный метод дискретного счета, метод преобразования фазового сдвига в импульсы тока, метод измерения с использованием фазометров на основе микро­процессорной системы, метод преобразования частоты сигнала.

Осциллографические методы, в свою очередь, разделяются на три: линейной развертки, синусоидальной развертки (эллипса) и кру­говой развертки.


Для реализации метода линейной развертки используют двухканальный или двухлучепой осциллограф (или однолучевой осцилло­граф с электронным коммутатором). На экране получается изображе­ние синусоидальных сигналов (рис. 5.7).

Рис. 5.7. Осциллограммы двух синусоидальных сигналов при измерении фазового сдвига методом линейной развертки

Сигналы u 1 (t u 2 (t )подаются на входы Y1 и Y2 осциллографа. Для обеспечения неподвижности осциллограмм необходимо синхро­низировать развертку одним из исследуемых сигналов.

По измеренным отрезкам 0a и 0b рассчитывается фазовый сдвиг из соотношения

(5.11)

Метод линейной развертки позволяет определить знак фазового сдвига, охватывает полный диапазон его измерения - 0...360°. Погреш­ность метода составляет ± (5...7°) и определяется нелинейностью раз­вертывающего напряжения, неточностью измерения линейных раз­меров отрезков 0а и 0b, качеством фокусировки и яркости луча (т.е. умением оператора).

Метод синусоидальной развертки реализуется с помощью одно; лучевого осциллографа. Исследуемые сигналы с напряжением u 1 (t) и u 2 (t) подаются на входы X и Y осциллографа при выключенном внутреннем генераторе линейной развертки. На экране появится фигура в виде эллипса (рис. 5.8), форма которого зависит от фазового сдвига между двумя напряжениями и их амплитуд. Фазовый сдвиг определяется по формуле

(5.12)

Рис. 5.8. Результирующая осциллограмма при измерении фазового сдвига методом синусоидальной развёртки

Для уменьшения погрешности перед измерением выравнивают ам­плитуды Х т и Y m плавным их регулированием по каналам Y и X.

Метод синусоидальной развертки позволяет измерять фазовый сдвиг в пределах от 0...180° без определения знака.

Погрешность измерения ∆φ методом синусоидальной развертки (методом эллипса) зависит от точности измерения отрезков, входя­щих в уравнение (5.12), от качества фокусировки и яркости луча на экране ЭЛТ. Эти причины оказывают заметное влияние при фазовом сдвиге, близком к нулю и к 90°.

Оба рассмотренных метода являются косвенными и достаточно трудоемкими.

Метод круговой развертки - наиболее удобный осциллографический метод измерения фазового сдвига. При этом определяется знак фазового сдвига во всем диапазоне измерения угла (0...360°). Погреш­ность измерения постоянна во всем диапазоне.

Структурная схема осциллографа при измерении фазового сдвига методом круговой развертки приведена па рис. 5.9, а.

Рис. 5.9. Структурная схема реализации метода круговой развертки (a), отсчет угла (б) и эпюры синусоидальных сигналов (в) при измерении фазового сдвига

На входы X и Y осциллографа подаются синусоидальные сигналы с на­пряжением U 1 и U 3 , сдвинутые относительно друг друга на 90° с помощью фазовращателя, состоящего из резистора и конденсатора. При равенстве сопротивлений плеч амплитуды напряжений U 1 и U 3 также равны и на экране будет наблюдаться осциллограмма в виде круга (рис. 5.9, б).

Сравниваемые сигналы u 1 (t) и u 2 (t) подаются на входы двух оди­наковых формирователей, которые преобразуют синусоидальные напряжения в последовательность коротких однополярных импульсов с напряжением U 4 и U 5 (рис. 5.9, в) с крутыми фронтами. Начала им­пульсов совпадают с моментом перехода синусоид через ось времени при их возрастании. Сигналы с напряжением U 4 и U 5 поступают на ло­гическую схему ИЛИ, где суммируются, и на выходе появляется по­следовательность импульсов с напряжением U 6 , которые подаются на управляющий электрод (модулятор) трубки, управляя яркостью луча в точках 1 и 2, и на окружности в точках 1 и 2 наблюдаются точки по­вышенной яркости.

Фазовый сдвиг между сигналами происходит следующим образом (см. рис. 5.9, б). При измерении центр прозрачного транспортира со­вмещают с центром круга, полная длина окружности которого соот­ветствует 360°. За период Т исследуемых сигналов с напряжением U 1 и U 2 электронный луч описывает круг. Дугу между точками 1 и 2, дли­на которой равна некоторому углу α, луч описывает за время задержки этих сигналов: ∆t = ∆φТ / 360°, откуда α= ∆φ.

Абсолютная погрешность измерения методом круговой развертки достигает 2...5° и зависит от точности определения центра круга, точ­ности измерения фазового сдвига с помощью транспортира и от степе­ни идентичности порога срабатывания обоих формирователей.

Компенсационный метод (метод наложения) реализуется с помо­щью осциллографа. Схема метода приведена на рис. 5.10, а.

Рис. 5.10. Схема реализации компенсационного метода (а ) и осциллограмма (6) при измерении фазового сдвига

Сигналы с напряжением U 1 и U 2 подаются на входы Y и X осцилло­графа, причем на вход Y - через градуированный фазовращатель, а на вход X подается непосредственно.

Фазовый сдвиг между исследуемыми напряжениями U 1 и U 2 опре­деляется путем изменения фазы сигнала с напряжением U 3 фазовра­щателем до тех пор, пока на экране не появится прямая наклонная ли­ния (рис. 5.10, б), что свидетельствует о равенстве фаз обоих сигналов. Определяемый фазовый сдвиг ∆φ отсчитывают по шкале фазовращателя относительно первичного положения, соответствующего поворо­ту фазы на 180°. Для уменьшения погрешности измерения необходимо произвести коррекцию фазовых сдвигов, создаваемых усилителями каналов вертикального и горизонтального отклонения луча осциллографа. Эта процедура осуществляется в той же последовательности, что и при измерении фазового сдвига метолом синусоидальной раз­вертки (см. рис. 5.8). В качестве индикатора нуля можно использовать электронный вольтметр.

Погрешность измерения компенсационным методом небольшая (0,2...0,5°) и определяется главным образом качеством градуировки фазовращателя.

Компенсационный метод применяют и в диапазоне СВЧ при измерении фазового сдвига, вносимого каким-либо элементом, допол­нительно включаемым в тракт СВЧ (фильтром, отрезком волновода).Структурная схема измерения фазового сдвига компенсационным методом представлена на рис. 5.11.

Рис. 5.11. Структурная схема измерения фазового сдвига в диапазоне СВЧ компенсационным метолом

Процесс измерения производится в следующем порядке. При от­ключенном исследуемом элементе Z СВЧ-тракт на выходе фазовра­щателя замыкают заглушкой накоротко. При включении генератора в тракте устанавливается стоячая волна. Поскольку минимум стоячей волны более резко выражен, чем максимум, то настройкой фазовра­щателя так перемещают узел стоячей волны относительно поперечной плоскости расположения зонда, чтобы выпрямительный прибор (миллиамперметр) показал минимум, и отмечают показания φ 1 , фазовраща­теля. Затем между фазовращателем и заглушкой включают исследуемый элемент Z, создающий смещение узла напряжения стоячей волны, и снова фазовращателем добиваются минимального показания инди­катора, которое составит φ 2 при отсчете по шкале фазовращателя.

Фазовый сдвиг, вносимый исследуемым элементом Z в СВЧ-тракт, определяется по формуле

Вместо фазовращателя и зонда в рассматриваемой схеме может быть использована измерительная линия. Описанный компенсацион­ный метод является косвенным.

Двухканальный фазометр позволяет измерить фазовый сдвиг непо­средственно. Принцип работы двухканального фазометра основан на преобразовании фазового сдвига в импульсы прямоугольной формы. Структурная схема двухканального фазометра, временные диаграммы сигналов, поясняющие его работу, и график зависимости показаний индикатора относительного ∆φ представлены на рис. 5.12.

Рис. 5.12. Структурная схема двухканального фазометра (а ), временные диаграммы сигналов, поясняющие его работу (6) и график зависимости показаний индикатора относительно ∆φ (в )

Фазометр состоит из преобразователя ∆φ во временной сдвиг ∆t, равный искомому фазовому сдвигу ∆φ и измерительного индикатора. Преобразователь состоит из двух одинаковых формирователей сигна­ла и сумматора, в качестве которого используется триггер.

Исследуемые сигналы с напряжением U 1 и U 2 с фазовым сдвигом ∆φ подаются на входы двух одинаковых формирователей, которые преобразуют поступившие синусоидальные сигналы в последовательность коротких импульсов с напряжением U 3 и U 4 . Импульсы с напряжени­ем U 3 запускают триггер, а импульсы с напряжением U 4 устанавливают его в исходное положение. В итоге на выходе образуется периодиче­ская последовательность импульсов, период повторения и длитель­ность которых равны периоду повторения T и сдвигу во времени ∆t исследуемых сигналов с амплитудой I m .

В качестве измерительного индикатора чаще всего используется микроамперметр магнитоэлектрической системы, показания которого пропорциональны среднему значению силы тока за период повторе­ния сигнала Т.

Как видно из временной диаграммы I = f (t) (см. рис. 5.12, б), в цепи измерительного прибора получаются прямоугольные импульсы дли­тельностью ∆t. Следовательно, среднее за период значение силы тока, протекающего через приборы, пропорционально удвоенному относи­тельному временному интервалу:

Из графика (см. рис. 5.12, б) следует, что фазовый сдвиг между ис­следуемыми сигналами с напряжением U 1 и U 2 соответствует времен­ному сдвигу ∆t и может быть выражен формулой

из которой следует, что фазовый угол линейно зависит от отношения ∆t / T :

Подставив уравнение (5.15) в выражение (5.14), получим

(5.16)

При постоянном значении амплитуды выходных импульсов шка­ла индикатора, измеряющего среднее значение силы тока I 0 , градуи­руется в значениях ∆φ. При этом шкала индикатора фазометра будет линейной. Достоинством двухканального фазометра является прямое измерение ∆φ в диапазоне ±180°.

Электронный метод дискретного счета положен в основу ра­боты цифрового фазометра и состоит из двух основных этапов: пре­образование фазового сдвига в соответствующий интервал времени и измерение этого интервала времени методом дискретного счета.

Упрощенная структурная схема цифрового фазометра и временные диаграммы, поясняющие его работу, представлены на рис. 5.13.

Рис. 5.13. Структурная схема фазометра при измерении фазового сдвига методом дискретного счета (а), и временные диаграммы сигналов, поясняющие его работу (б)

Вырабатываемый кварцевым генератором синусоидальный сигнал подается на блок формирования, на выходе которого образуются счет­ные импульсы, поступающие на один вход временного селектора. На другой его вход поступает преобразованная последовательность им­пульсов длительностью ∆t с периодом повторения исследуемых сиг­налов Т. Селектор открывается только на время, равное длительности ∆t импульсов с напряжением U 3 и пропускает на счетчик импульсы с напряжением U 4 от генератора. Временной селектор формирует па­кеты импульсов с напряжением U 5 (не изменяя периода Т), поступаю­щих на счетчик в одном пакете.

где T 0 - период повторения счетных импульсов кварцевого генератора.

Подставив в формулу (5.17) соотношение для ∆t из формулы (5.16), определяем ∆φ для сигналов с напряжением U 1 и U 2

(5.18)

Общая погрешность измерения этим методом зависит от погреш­ности дискретности, которая связана с тем, что интервал ∆t измеряется с точностью до одного периода Т 0 , и от нестабильности времени сраба­тывания преобразователя.

Большими возможностями обладают фазометры со встроенным микропроцессором, которыми можно измерять фазовый сдвиг между двумя периодическими сигналами за любой выбранный период.

На рисунке 5.14 представлена структурная схема фазометра co встроенным микропроцессором и временные диаграммы сигналов, поясняющие его работу.

После входного устройства синусоидальные сигналы с напряжением U 1 и U 2 поступают на входы импульсного преобразователя, в котором преобразуются в короткие импульсы с напряжением U " 1 и U " 2 С помощью первой пары данных импульсов формирователь 1 выра­батывает импульс с напряжением U 3 длительностью ∆t , которая равна временному сдвигу сигналов с напряжением U 1 и U 2 . Этим импульсом открывается временной селектор 1, и в течение его действия на вход счетчика 1 проходят счетные импульсы с периодом повторения Т 0 , которые вырабатываются микропроцессором. Прошедший на вход счетчика 1 пакет импульсов с напряжением U 4 показан на рис. 5.14, б. Число импульсов в пакете выражается формулой

Одновременно с этим формирователь 2 вырабатывает импульсы с напряжением U 5 , с длительностью, равной периоду повторения иссле­дуемых сигналов с напряжением U 1 и U 2 . Этот импульс открывает се­лектор 2 (на время своего действия) и пропускает от микропроцессора на счетчик 2 пакет импульсов с напряжением U 6 и с периодом T 0 , число которых в пакете составляет

Рис. 5.14. Структурная схема фазометра со встроенным микропроцессором (а ) и временные диаграммы сигналов, поясняющие его работу (б)

Для определения искомого значения фазового сдвига ∆φ за выб­ранный период повторения сигнала Т необходимо найти отношение величин (5.19) и (5.20), равное

затем с учетом основной формулы ∆φ = 360° ∆t / Т умножить это от­ношение на 360°:

(5.21)

Данное вычисление выполняется микропроцессором, на который передаются вырабатываемые счетчиками 1 и 2 коды чисел п и N. При соответствующей программе микропроцессора на дисплее высвечи­вается значение фазового сдвига ∆φ для любого выбранного периода Т. Благодаря сравнению таких сдвигов в разных периодах появляется возможность наблюдать флуктуации ∆φ и оценивать их статические параметры, к которым относятся математическое ожидание, диспер­сия, среднеквадратичное отклонение, измеренное среднее значение фазового сдвига.

При измерении фазометром со встроенным микропроцессором среднего значения фазового сдвига ∆φ за заданное количество К периодов Т в счетчиках 1 и 2 накапливаются коды числа импульсов, поступивших на их входы за К периодов, т.е. кодов чисел пК и NK соот­ветственно, передаваемых в микропроцессор.

Малую погрешность измерения ∆φ данным фазометром можно по­лучить только на достаточно низкой частоте исследуемых сигналов. Расширить частотный диапазон позволяет предварительное (гетеродинное) преобразование сигналов.

К основным метрологическим характеристикам фазометров, кото­рые необходимо знать при выборе прибора, относятся следующие:

· назначение прибора;

· диапазон измерения фазового сдвига;

· частотный диапазон;

· допустимая погрешность измерения.

Из серии "Физические основы звука" , посвященной объяснению основ физических процессов, с которыми приходится сталкиваться музыкантам и просто любителям музыки. Материал дается языком, доступным для людей далеких от техники и сегодня мы рассмотрим фазу сигнала и фазовый сдвиг.

Мы вплотную подошли к тому, чтобы рассказать, что же такое фаза.

Посмотрим на формулу, описывающую синусоидальное колебание:

S(t)=Amp*sin(Ф) ,

где S(t) - это значение сигнала (уровень звукового давления, величина семпла,

уровень напряжения на входе колонок) в момент времени t;

Amp - амплитуда сигнала (максимально возможное значение для этого колебания);

sin - синусоидальная функция.

Ф - фаза сигнала равна:

Ф=2*PI*f+ф/360*2*PI

PI - число «пи»;

f - частота (высота тона) сигнала в Герцах;

ф - сдвиг фазы сигнала в градусах.

Фаза в течении периода колебания меняется от 0 до 360 градусов . Потом опять - от 0 до 360, и так далее. Поскольку фаза однозначно связана с уровнем колебания в точке периода, соответствующего фазе, то:

Фазу, с некоторым допущением, можно рассматривать, как мгновенный уровень сигнала в определенной точке времени внутри периода.

При значении фазы 0 градусов - уровень сигнала (синусоиды) равен 0.

При значении фазы 90 градусов - 1 Па.

При значении фазы 180 градусов - снова 1 Па.

При значении фазы 360 градусов (все равно, что 0 градусов следующего периода) - снова 0 Па.

С течением времени уровень сигнала изменяется по определенному закону, поэтому грубо можно сказать и так:

ФАЗА СИГНАЛА - это уровень сигнала в текущий момент времени.

ФАЗА СИГНАЛА - это уровень звукового давления в текущий момент времени в нашей точке пространства.

Теперь о том, как такое виртуальное понятие, как ФАЗА СИГНАЛА влияет на реальную жизнь.

Допустим две колонки порождают в точке нахождения слушателя переменные звуковые давления, которые складываются друг с другом. Эти давления то нарастают, то убывают. А если мы предположим, что давления от обоих колонок изменяются одинаково, но всегда в противоположную сторону. То есть,

давление от первой колонки 0,5 Па (паскалей), а от второй минус 0,5 Па,

от первой минус 1 Па, от второй 1 Па.

Такое явление называется противофазой . Суммарная громкость звука в точке слушателя - всегда равна нулю.

Что же такое противофаза по формуле синусоидального колебания?

S(t)=Amp*sin(2*PI*f+ф/360*2*PI)

Это когда в одной колонке сигнал изменяется по формуле

S(t)=Amp*sin(2*PI*f+0) , фазовый сдвиг ф=0 градусов.

А в другой колонке сигнал изменяется по формуле (сигналы по форме одинаковые, но с задержкой по времени)

S(t)=Amp*sin(2*PI*f+180/360*2*PI) , фазовый сдвиг ф=180 градусов.

360 градусов - длина периода сигнала, 180 градусов - половина периода сигнала.

Иными словами колебание во второй колонке задержано на половину периода (на 180 градусов).

Если задержка равна нулю , то уровень сигнала наоборот увеличивается, т.к. давление от первой колонки - 1 Па, от второй 1 Па, в сумме 1+1=2 Па. В этом случае говорят, что сигналы в фазе (фазовый сдвиг равен 0 градусов).

При значениях фазового сдвига от 0 до 180 градусов - суммарный уровень громкости становится меньше , пока не станет равным нулю при значении фазового сдвига 180 градусов .

Если фазовый сдвиг становится больше 180 градусов , то суммарный уровень громкости опять возрастает .

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

От величины активного, индуктивного и ёмкостного сопротивления.
tg w = (X-C)/R. Где w - угол сдвига фаз, X - индуктивное сопротивление, C- ёмкостное сопротивление, R- активное сопротивление.

Угол сдвига фаз между напряжением и током в электрической цепи определяется аргументом ее комплексного сопротивления  . Поэтому при анализе цепи часто бывает достаточно определить характер изменения этого угла при вариации некоторого параметра.

Пусть R= const, а X =var. Тогда конец вектора Z будет скользить по прямой R= const (рис. 2). При X = 0 сопротивление Z вещественное, т.е. чисто резистивное и сдвиг фаз между током и напряжением  равен нулю.

Аналитический расчет токи в цепи по методу узловых напряжений

Метод узловы́х потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений , в которой неизвестными являются потенциалы в узлах цепи . В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным 0. Затем узлы нумеруются, после чего составляется система уравнений .

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов , примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Проверка баланса мощностей

Баланс мощностей является следствием закона сохранения энергии - суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.



Баланс мощностей используют для проверки правильности расчета электрических цепей.

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Для проверки правильности решения составляем баланс мощностей.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус ). Баланс мощностей для заданной цепи запишется так: