Тонкая и сверхтонкая структура оптических спектров. Спектроскопия. Инфракрасные спектры и спектры комбинационного рассеяния

Исследование спектра атома водорода при помощи спектральных приборов с высокой разрешающей способностью и большой дисперсией показало, что спектральные линии водорода имеют тонкую структуру, т.е. состоят из нескольких линий с очень близкими значениями длин волн. Например, головная линия серии Бальмера H  представляет собой квинтет (состоит из пяти отдельных линий) с разностью длин волн нм.

Тонкая структура спектральных линий водородоподобного атома объясняется дополнительным взаимодействием между зарядом атомного ядра и спиновым магнитным моментом электрона. Такое взаимодействие называют спин-орбитальным.

Полный момент импульса электрона складывается из орбитального и спинового моментов. Сложение этих моментов происходит по квантово-механическим законам так, что квантовое число полного момента импульса j может принимать два (
,
, если
) или одно (
, если
) значение.

С учётом спин-орбитального взаимодействия состояния атома с различными значениями j обладают различной энергией, поэтому уровни энергии с
расщепляются на два подуровня, которые называютсядублетами . Нерасщепляющиеся уровни с
и
называютсясинглетами .

Величина расщепления определяется волновым релятивистским уравнением Дирака, которое даёт поправку к энергии (5.2):

, (5.4)

где
– постоянная тонкой структуры. ЭнергияE nj спин-орбитального взаимодействия составляет примерно
часть энергии электронаE n . Такой же порядок малости имеет относительное различие компонент тонкой структуры спектральных линий. В данной лабораторной работе разрешающая способность приборов не позволяет наблюдать столь малое расщепление спектральных линий атома водорода.

3. Многоэлектронные атомы

Многоэлектронный атом состоит из ядра с зарядом Ze и окружающей ядро электронной оболочки с Z электронами (для атома ртути
). Точное нахождение волновой функции всей электронной оболочки атома невозможно из-за большого числа частицZ . Обычно для расчётов используют модель атома, в которой сохраняется представление об индивидуальном состоянии электрона в атоме. В таком подходе, получившем название одночастичного приближения , состояние отдельных электронов описывается с помощью четырех квантовых чисел n , l , m , m s . При этом, согласно принципу Паули, в одном квантовом состоянии может находиться не более одного электрона. Электроны атома с заданным значением главного квантового числа n образуют оболочку (слой). Совокупность электронов с заданными значениями квантовых чисел n и l образует подоболочку. Подоболочки обозначаются буквами: s , p , d , f , , которым отвечают значения
Максимальное число электронов в подоболочке равно
. Вs подоболочке это число равно 2, в p оболочке – 6, в d оболочке – 10, в f оболочке – 14 и т.д.

Электронной конфигурацией называют распределение электронов в атоме по одночастичным состояниям с различными n и l . Например, для атома ртути обозначение электронной конфигурации имеет вид: , где цифры над символами подоболочки обозначают число электронов в данном состоянии. Расположение электронных оболочек и подоболочек в конфигурации определяется порядком заполнения одночастичных электронных состояний. Заполнение состояний начинается с нижних уровней энергии. В атоме ртути полностью заполнены первые четыре оболочки, а пятая и шестая заполнены не полностью. В основном состоянии атома ртути два валентных электрона находятся на 6s подоболочке.

Для многоэлектронного атома полные моменты импульса полностью заполненных внутренних оболочек и подоболочек равны нулю. Поэтому полный момент импульса такого атома определяется орбитальными и спиновыми моментами внешних, валентных электронов. Валентные электроны находятся в центрально-симметричном поля ядра и электронов замкнутых оболочек, поэтому их суммарный момент импульса является сохраняющейся величиной. Для лёгких и средних атомов взаимодействие электронов, обусловленное их орбитальным и спиновым моментами, приводит к тому, что эти моменты складываются порознь, т.е. орбитальные моменты всех электронов складываются в полный орбитальный момент атома
, а спиновые моменты электронов складываются в спиновый момент атома
. В этом случае говорят, что между электронами осуществляетсяL -S связь или связь Рёссель – Саундерса.

Квантовые числа L и S орбитального и спинового моментов атома определяются общими квантово-механическими правилами сложения моментов импульсов. Например, если два валентных электрона имеют квантовые числа l 1 и l 2 , то L может принимать следующие целочисленные значения:
. Применяя аналогичное правило для спина, и учитывая, что спиновое число электрона
, получаем возможные значенияS для двух валентных электронов:
.

Уровень энергии, отвечающий определённым значениям квантовых чисел L и S , называется спектральным термом . В спектроскопии принято обозначать терм символом
, где вместо значений
ставят буквыS , P , D , F , … соответственно. Число
называетсямультиплетностью терма.

С учётом спин-орбитального взаимодействия уровень энергии, или терм, расщепляется на ряд подуровней, которым отвечают разные значения полного момента импульса атома. Такое расщепление терма называется тонким или мультиплетным . При заданных числах L и S полный момент импульса атома
определяется квантовым числомJ , которое может принимать значения: . Компоненты тонкой структуры или подуровни энергии, отвечающие заданным значениямL , S и J обозначаются символом
.

Если спиновое число двух валентных электронов атома ртути
, то единственное возможное значение
. В этом случае мультиплетность терма равна
, т.е. все уровни синглетны. Их спектральные обозначения:,,
,и т.д.

Рис. 5.3

Если
, а
, то возможны три случая:
. В этом случае мультиплетность равна
, т.е. все уровни триплетны. И, наконец, если
, то единственное значение
, а уровень этого состояния – синглетный. В соответствии с этим получаются следующие возможные уровни энергии в атоме ртути:,,,,
,
,
,
,,
и т. д.

Все перечисленные уровни энергии определяются различными допустимыми наборами квантовых состояний, в которых могут находиться валентные электроны атома ртути.

Анализ спектров излучения и поглощения ртути в ультрафиолетовой, видимой и инфракрасной областях позволил составить полную схему возможных уровней энергии и переходов между ними (рис. 5.3). На схеме указаны длины волн спектральных линий ртути в нанометрах, а также квантовое число n для каждого уровня.

На схеме отмечены значения главного квантового числа около соответствующих уровней энергии. На рис. 5.3 также указаны переходы между уровнями и длины волн спектральных линий ртути, соответствующих этим переходам. Возможные переходы определяются правилами отбора:
;
и
, причём переход из состояния
в состояние
невозможен. Из требования
следует, что разрешены переходы между уровнями одинаковой мультиплетности (синглет - синглетные и триплет-триплетные переходы). Однако, как видно из рис. 5.3, наблюдаются и запрещенные правилами отбора переходы (пять синглет- триплетных переходов). Существование запрещенных правилами отбора переходов имеет место для атомов с большими атомными номерами. При исследовании схемы уровней и переходов атомов ртути необходимо обратить внимание на следующее обстоятельство: для больших атомных номеров мультиплетное расщепление из-за спин-орбитального взаимодействия имеет большие значения. Так, триплетный уровень ртути
имеет расщепление (разность между максимальной и минимальной энергиями) порядка одного электрон-вольта, что составляет примерно одну десятую часть энергии основного состояния атома ртути. В этом смысле расщепление уровня энергии уже нельзя считать «тонким».

Исследование спектров щелочных металлов при помощи приборов с большой разрешающей силой показало, что каждая линия этих спектров является двойной (дублет). Так, например, характерная для натрия желтая линия (см. рис. 29.1) состоит из двух линий с длинами волн 5890 и 5896 А. То же относится и к другим линиям главной серии, а также к линиям других серий.

Структура спектра, отражающая расщепление линий на компоненты, называется тонкой структурой. Сложные линии, состоящие из нескольких компонент, получили название мультиплетов. Тонкая структура обнаруживается, кроме щелочных металлов, также и у других элементов, причем число компонент в мультиплете может быть равно двум (дублеты), трем (триплеты), четырем (квартеты), пяти (квинтеты) и т. д. В частном случае спектральные линии даже с учетом тонкой структуры могут быть одиночными (синглеты).

Расщепление спектральных линий, очевидно, обусловлено расщеплением энергетических уровней. Для объяснения расщепления уровней Гаудсмит и Уленбек выдвинули в 1925 г. гипотезу о том, что электрон обладает собственным моментом импульса , не связанным с движением электрона в пространстве.

Этот собственный момент был назван спином.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям электрон уподоблялся волчку или веретену. Кстати, отсюда происходит и сам термин «спин»: по-английски spin означает «верчение». Однако очень скоро пришлось отказаться от подобных модельных представлений, в частности по следующей причине. Вращающийся заряженный шарик должен обладать магнитным моментом, причем отношение магнитного момента к механическому должно иметь значение

(см. формулу (56.3) 2-го тома).

Действительно, было установлено, что электрон, наряду с собственным механическим моментом, обладает также и собственным магнитным моментом Однако ряд опытных фактов, в частности сложный эффект Зеемана, свидетельствует о том, что отношение собственных магнитного и механического моментов в два раза больше, чем для орбитальных моментов:

Таким образом, представление об электроне как о вращающемся шарике оказалось несостоятельным. Спин следует считать внутренним свойством, присущим электрону, подобно тому как ему присущи заряд и масса.

Предположение о спине электрона было подтверждено большим количеством опытных фактов и должно считаться совершенно доказанным. Оказалось также, что наличие спина и все его свойства автоматически вытекают из установленного Дираком уравнения квантовой механики, удовлетворяющего требованиям теории относительности. Таким образом, выяснилось, что спин электрона является свойством одновременно квантовым и релятивистским. Спином обладают также протоны, нейтроны, фотоны и другие элементарные частицы (кроме мезонов).

Величина собственного момента импульса электрона определяется по общим законам квантовой механики (см. формулу (24.2)) так называемым спиновым квантовым числом s, равным

Проекция спина на заданное направление может принимать едантованные значения, отличающиеся друг от друга на

Чтобы найти значение собственного магнитного момента электрона, умножим на отношение (см. (31.2)):

( - магнетон Бора; см. формулу (56.7) 2-го тома). Знак минус указывает на то, что механический и магнитный моменты электрона направлены в противоположные стороны.

Проекция собственного магнитного момента электрона на заданное направление может иметь следующие значения:

(минус получается, если плюс - если

Таким образом, проекция собственного момента импульса электрона может принимать значения а собственного магнитного момента - значения . В ряд формул, в частности в выражение для энергии, входят не сами моменты, а их проекции. Поэтому принято говорить, что собственный механический момент (спин) электрона равен половине (подразумевается: в единицах ), а собственный магнитный момент равен одному магнетону Бора.

Рассмотрим теперь на примере атома натрия, как существование спина электрона может объяснить мультиплетную структуру спектра. Поскольку момент атомного остатка равен нулю, момент атома натрия равен моменту валентного электрона. Момент же электрона будет слагаться из двух моментов: орбитального обусловленного движением электрона в атоме, и спинового не связанного с движением электрона в пространстве. Результирующая этих двух моментов дает полный момент импульса валентного электрона. Сложение орбитального и спинового моментов в полный момент осуществляется по тем же квантовым законам, по которым складываются орбитальные моменты разных электронов (см. формулы (24.7) и (24.8)). Вели чина полного момента определяется квантовым числом

причем может иметь значения

где I и s - соответственно азимутальное и спиновое квантовые числа. При квантовое число имеет только одно значение; При отличном от нуля, возможны два значения} , которые соответствуют двум возможным взаимным ориентациям моментов - «параллельной» и «антипараллельной».

Теперь учтем, что с механическими моментами связаны магнитные моменты, которые взаимодействуют друг с другом подобно тому, как взаимодействуют два тока или две магнитные стрелки. Энергия этого взаимодействия (называемого спин-орбитальным взаимодействием) зависит от взаимной ориентации орбитального и собственного моментов. Следовательно, состояния с различными должны обладать различной энергией.

Таким образом, каждый терм ряда расщепляется на два, соответствующих каждый терм ряда расщепляется на термы с и т. д. Каждому терму ряда соответствует только одно значение поэтому термы ряда S не расщепляются.

Итак, каждый ряд термов, кроме S, распадается на два ряда - структура термов оказывается дублетной (двойной). Термы принято обозначать символами:

Правый нижний индекс дает значение j. Верхний левый индекс указывает мультиплетность термов. Хотя ряд S является одиночным, при символе терма также ставится 2, чтобы показать, что этот ряд принадлежит к системе термов, в целом дублетной.

С учетом тонкой структуры схема термов выглядит более сложно, о чем дают представление схемы уровней натрия (рис. 31.1) и цезия (рис. 31.2). Схему для натрия следует сравнить со схемой, изображенной на рис. 29.1. Поскольку мультиплетное расщепление термов D и F для натрия очень мало, подуровни D и F, отличающиеся значениями изображены на схеме слитно.

Для квантового числа полного момента импульса атома имеется правило отбора

Мультиплетное расщепление у цезия значительно больше, чем у натрия. На схеме цезия видно, что тонкая структура диффузной серии состоит не из двух линий, а из трех:

Возникновение этих линий пояснено дополнительно на рис. 31.3. Изображенный пунктиром переход запрещен правилом отбора (31.7). В нижней части схемы показано, как выглядит сам мультиплет.

Толщина линий на схеме примерно соответствует интенсивности спектральных линий. Совокупность получающихся линий выглядит как дублет, у которого одна из компонент в свою очередь оказывается двойной.

Такая группа линий называется не триплетом, а сложным дублетом, так как она возникает в результате комбинации дублетных термов.

Заметим, что в связи с существованием спина электрона естественно возникает вопрос о том, что и у водородного атома уровни с должны быть двойными, а спектральные линии - дублетными.

Тонкая структура водородного спектра действительно была обнаружена экспериментально.

Обусловленное спином расщепление энергетических уровней является релятивистским эффектом. Релятивистская квантовая теория дает для расстояния между уровнями тонкой структуры водородного атома значение раз меньше, чем расстояние между основными уровнями.

Постоянная тонкой структуры принадлежит к числу фундаментальных констант природы. Ее смысл становится очевидным при переходе к так называемой естественной системе единиц, применяемой в квантовой электродинамике. В этой системе в качестве единицы массы принимается масса электрона те, в качестве единицы длины - комптоновская длина волны электрона (см. § 11), в качестве единицы энергии - энергия покоя электрона и т. д. Вычислим в этих единицах электрическую энергию взаимодействия двух электронов, находящихся на расстоянии друг от друга. Для этого нужно выражение разделить на В результате получится безразмерная величина, равная

(см. формулу (31.9)). Если бы мы заряд электрона q выражали в естественных единицах, то формула для энергии взаимодействия имела бы вид

Отсюда следует, что а представляет собой квадрат элементарного заряда, выраженного в естественных единицах.

Согласно (31.10) постоянная тонкой структуры характеризует энергию взаимодействия двух электронов. Иначе можно сказать, что а определяет, как сильно электрон связан с электромагнитным полем. По этой причине постоянную а называют константой связи электрона с электромагнитным полем.

В выражение (31.10) для а масса электрона не входит. Следовательно, а является константой связи с электромагнитным полем для любой элементарной частицы, имеющей заряд .

Если спиновый и орбитальный моменты в атоме отличны от нуля, то за счет взаимодействия спинового и орбитального моментов (спин-орбитальное взаимодействие) энергетические уровни могут дополнительно расщепиться. В результате этого вид спектра ЭПР усложнится и вместо одной спектральной линии в спектре ЭПР появятся несколько линий. В этом случае говорят о том, что спектр ЭПР имеет тонкую структуру. При наличии сильного спин-орбитального взаимодействия расщепление зеемановских уровней может наблюдаться даже при отсутствии внешнего магнитного поля.

Ширина спектральной линии

Сигналы ЭПР характеризуются определенной шириной спектральной линии. Связано это с тем, что зеемановские уровни энергии, между которыми происходят резонансные переходы, не являются бесконечно узкими линиями. Если вследствие взаимодействия неспаренных электронов с другими парамагнитными частицами и решеткой эти уровни оказываются размытыми, то условия резонанса могут реализоваться не при одном значении поля Н 0 , а в некотором интервале полей. Чем сильнее спин-спиновое и спин-решеточное взаимодействия, тем шире спектральная линия. В теории магнитного резонанса принято характеризовать взаимодействие спинов с решеткой так называемым временем спин-решеточной релаксации Т1 , а взаимодействие между спинами – временем спин-спиновой релаксации Т2 . Ширина одиночной линии ЭПР обратно пропорциональна этим параметрам:

Времена релаксации Т1 и Т2 зависят от природы парамагнитных центров, их окружения и молекулярной подвижности, температуры.

Исследование формы спектра ЭПР в зависимости от различных физико-химических факторов является важным источником информации о природе и свойствах парамагнитных центров. Форма спектров ЭПР радикалов чувствительна к изменениям их окружения и подвижности, поэтому они часто используются в качестве молекулярных зондов, с помощью которых изучают микровязкость и структурные изменения в различных системах: в растворах, полимерах, биологических мембранах и макромолекулярных комплексах. Так, например, из температурных зависимостей интенсивности и ширины спектров ЭПР спиновых зондов можно получить важную информацию о фазовых переходах в системе, содержащей парамагнитные центры.

Перечисленные выше характеристики спектров ЭПР – g-фактор, тонкая и сверхтонкая структура спектра ЭПР, ширины отдельных компонент спектра – являются своего рода "паспортом" парамагнитного образца, по которому можно

идентифицировать источник сигнала ЭПР и определить его физико-химические свойства. Так, например, наблюдая за сигналами ЭПР биологических объектов, можно непосредственно следить за ходом внутриклеточных процессов в листьях растений, тканях и клетках животных, в бактериях.

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 – 106 МГц; микрорадиоволны) и высоких частот (примерно 10- 2 – 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.

Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10- 7 эВ для области радиочастот и около 10- 4 эВ для сверхвысоких частот. В двух видах радиоспектроскопии, а именно в спектроскопии ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), разница энергий уровней связана с различной ориентацией соответственно магнитных дипольных моментов ядер в приложенном магнитном поле и электрических квадрупольных моментов ядер в молекулярных электрических полях, если последние не являются сферически симметричными.

Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное ½.

Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с "полным спариванием", аналогичным полному спариванию электронов в диамагнитной молекуле.

В конце 1945 года двумя группами американских физиков под руководством Ф. Блоха (Станфорский университет) и Э.М. Парселла (Гарвардский университет) впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

СПЕКТРОСКОПИЯ ЯМР ВЫСОКОГО РАЗРЕШЕНИЯ

Сущность явления ЯМР можно проиллюстрировать следующим образом. Если ядро, обладающее магнитным моментом, помещено в однородное поле H 0 , направленное по оси z, то его энергия (по отношению к энергии при отсутствии поля) равна – m z H 0 , где m z – проекция ядерного магнитного момента на направление поля.

Как уже отмечалось, ядро может находиться в 2I + 1 состояниях. При отсутствии внешнего поля H 0 все эти состояния имеют одинаковую энергию.

Ядро со спином I имеет дискретные уровни энергии. Расщепление уровней энергии в магнитном поле можно назвать ядерным зеемановским расщеплением, так как оно аналогично расщеплению электронных уровней в магнитном поле (эффект Зеемана).

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный – речь идет о системе ядер, магнитный – имеются в виду только их магнитные свойства, резонанс – само явление носит резонансный характер.

Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины (~ 150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется.

До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1H (протонный магнитный резонанс – ПМР) и фтора 19F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:

* высокое естественное содержание "магнитного" изотопа (1H 99,98%, 19F 100%); для сравнения можно упомянуть, что естественное содержание "магнитного" изотопа углерода 13C составляет 1,1%;

* большой магнитный момент;

* спин I = 1/2.

Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1H и 19F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Большое количество работ было посвящено резонансу на других (помимо 1H и 19F) ядрах, таких, как 13C, 31P, 11B, 17O в жидкой фазе (так же, как и на ядрах 1H и 19F).

Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

Еще одна особенность ЯМР – влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 – 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1 " 104 Гц (отсюда понятие ЯМР широких линий).

В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:

Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (H 0) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю H 0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

где σ – безразмерная постоянная, называемая постоянной экранирования и не зависящая от H 0 , но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение Hлок по сравнению с H 0 . Величина σ меняется от значения порядка 10 -5 для протона до значений порядка 10 - 2 для тяжелых ядер.

Эффект экранирования заключается в уменьшении расстояния между уровнями ядерной магнитной энергии или, другими словами, приводит к сближению зеемановских уровней. При этом кванты энергии, вызывающие переходы между уровнями, становятся меньше и, следовательно, резонанс наступает при меньших частотах. Если проводить эксперимент, изменяя поле H0 до тех пор, пока не наступит резонанс, то напряженность приложенного поля должна иметь большую величину по сравнению со случаем, когда ядро не экранировано.

В подавляющем большинстве спектрометров ЯМР запись спектров осуществляется при изменении поля слева направо, поэтому сигналы (пики) наиболее экранированных ядер должны находиться в правой части спектра. Смещение сигнала в зависимости от химического окружения, обусловленное различием в константах экранирования, называется химическим сдвигом.

Впервые сообщения об открытии химического сдвига появились в нескольких публикациях 1950 – 1951 годов. Среди них необходимо выделить работу Арнольда с соавторами (1951 год), получивших первый спектр с отдельными линиями, соответствующими химически различным положениям одинаковых ядер 1H в одной молекуле. Речь идет об этиловом спирте CH3CH2OH, типичный спектр ЯМР 1H которого при низком разрешении показан на рис. 3.

В этой молекуле три типа протонов: три протона метильной группы CH3-, два протона метиленовой группы -CH2- и один протон гидроксильной группы -OH. Видно, что три отдельных сигнала соответствуют трем типам протонов. Так как интенсивность сигналов находится в соотношении 3: 2: 1, то расшифровка спектра (отнесение сигналов) не представляет труда. Поскольку химические сдвиги нельзя измерять в абсолютной шкале, то есть относительно ядра, лишенного всех его электронов, то в качестве условного нуля используется сигнал эталонного соединения. Обычно значения химического сдвига для любых ядер приводятся в виде безразмерного параметра δ.

За единицу химического сдвига принимается одна миллионная доля напряженности поля или резонансной частоты (м.д.). В зарубежной литературе этому сокращению соответствует ppm (parts per million). Для большинства ядер, входящих в состав диамагнитных соединений, диапазон химических сдвигов их сигналов составляет сотни и тысячи м.д., достигая 20 000 м.д. в случае ЯМР 59Co (кобальта). В спектрах 1H сигналы протонов подавляющего числа соединений лежат в интервале 0 – 10 м.д.

Спин-спиновое взаимодействие

В 1951 – 1953 годах при записи спектров ЯМР ряда жидкостей обнаружилось, что в спектрах некоторых веществ больше линий, чем это следует из простой оценки числа неэквивалентных ядер. Один из первых примеров – это резонанс на фторе в молекуле POCl2F. Спектр 19F состоит из двух линий равной интенсивности, хотя в молекуле есть только один атом фтора. Молекулы других соединений давали симметричные мультиплетные сигналы (триплеты, квартеты и т.д.).

Другим важным фактором, обнаруженным в таких спектрах, было то, что расстояние между линиями, измеренное в частотной шкале, не зависит от приложенного поля H0 , вместо того чтобы быть ему пропорциональным, как должно быть в случае, если бы мультиплетность возникала из-за различия в константах экранирования.

Рэмзи и Парселл в 1952 году первыми объяснили это взаимодействие, показав, что оно обусловлено механизмом косвенной связи через электронное окружение. Ядерный спин стремится ориентировать спины электронов, окружающих данное ядро. Те, в свою очередь, ориентируют спины других электронов и через них – спины других ядер. Энергия спин-спинового взаимодействия обычно выражается в герцах (то есть постоянную Планка принимают за единицу энергии, исходя из того, что E = hn). Ясно, что нет необходимости (в отличие от химического сдвига) выражать ее в относительных единицах, так как обсуждаемое взаимодействие, как отмечалось выше, не зависит от напряженности внешнего поля. Величину взаимодействия можно определить измеряя расстояние между компонентами соответствующего мультиплета.

Простейшим примером расщепления из-за спин-спиновой связи, с которым можно встретиться, является резонансный спектр молекулы, содержащей два сорта магнитных ядер А и Х. Ядра А и Х могут представлять собой как различные ядра, так и ядра одного изотопа (например, 1H) в том случае, когда химические сдвиги между их резонансными сигналами велики.

Расстояние между компонентами в каждом дублете называют константой спин-спинового взаимодействия и обычно обозначают как J (Гц); в данном случае это константа JАХ.

Возникновение дублетов обусловлено тем, что каждое ядро расщепляет резонансные линии соседнего ядра на 2I + 1 компонент. Разности энергий между различными спиновыми состояниями так малы, что при тепловом равновесии вероятности этих состояний в соответствии с больцмановским распределением оказываются почти равными. Следовательно, интенсивности всех линий мультиплета, получающегося от взаимодействия с одним ядром, будут равны. В случае, когда имеется n эквивалентных ядер (то есть одинаково экранированных, поэтому их сигналы имеют одинаковый химический сдвиг), резонансный сигнал соседнего ядра расщепляется на 2nI + 1 линий.

Вскоре после открытия явления ЯМР в конденсированных средах стало ясно, что ЯМР будет основой мощного метода исследования строения вещества и его свойств. Действительно, исследуя спектры ЯМР, мы используем в качестве резонирующей систему ядер, чрезвычайно чувствительных к магнитному окружению. Локальные же магнитные поля вблизи резонирующего ядра зависят от внутри- и межмолекулярных эффектов, что и определяет ценность этого вида спектроскопии для исследования строения и поведения многоэлектронных (молекулярных) систем.

В настоящее время трудно указать такую область естественных наук, где бы в той или иной степени не использовался ЯМР. Методы спектроскопии ЯМР широко применяются в химии, молекулярной физике, биологии, агрономии, медицине, при изучении природных образований (слюд, янтаря, полудрагоценных камней, горючих минералов и другого минерального сырья), то есть в таких научных направлениях, в которых исследуются строение вещества, его молекулярная структура, характер химических связей, межмолекулярные взаимодействия и различные формы внутреннего движения.

Методы ЯМР находят все более широкое применение для изучения технологических процессов в заводских лабораториях, а также для контроля и регулирования хода этих процессов в различных технологических коммуникациях непосредственно на производстве. Исследования последних пятидесяти лет показали, что магнитно-резонансные методы позволяют обнаруживать нарушения протекания биологических процессов на самой ранней стадии. Разработаны и выпускаются установки для исследования всего тела человека методами магнитного резонанса (методами ЯМР-томографии).

До сих пор речь шла об особенностях структуры спектров, объясняющихся свойствами электронного облака атома.

Однако уже давно отмечались детали в структуре спектров, не объяснимые с этой точки зрения. Сюда относится сложная структура отдельных линий ртути и обнаруженная в 1928 г. Л. Н. Добрецовым и А. Н. Терениным двойная структура каждой из двух желтых линий натрия. В последнем случае расстояние между компонентами составляло всего 0,02 А, что в 25 раз меньше радиуса атома водорода. Указаные детали строения спектра получили название сверхтонкой структуры (рис. 266).

Рис. 266. Сверхтонкая структура натриевой линии.

Для ее исследования обычно применяются эталон Фабри - Перо и другие приборы с большой разрешающей способностью. Малейшее расширение спектральных линий, вызванное взаимодействием атомов между собой или их тепловым движением, приводит к слиянию компонент сверхтонкой структуры. Поэтому в настоящее время широко применяется метод молекулярных пучков, впервые предложенный Л. Н. Добрецовым и А. Н. Терениным. При этом методе наблюдается свечение или поглощение пучка атомов, летящих в вакууме.

В 1924 г. японский физик Нагаока сделал первую попытку связать сверхтонкую структуру с ролью атомного ядра в спектрах. Эта попытка была сделана в очень неубедительной форме и вызвала совершенно издевательскую критику со стороны известного

спектроскописта И. Рунге. Он приписал каждой букве фамилии Нагаока ее порядковое число в алфавите и показал, что произвольная комбинация этих чисел между собой дает такое же хорошее согласие с опытными данными, как и теория Нагаоки.

Однако Паули вскоре установил, что в идеях Нагаоки было зерно истины и что сверхтонкая структура действительно непосредственно связана со свойствами атомного ядра.

Следует различать два типа сверхтонкой структуры. Первому типу соответствует сверхтонкая структура, одинаковая по числу компонент для всех линий спектра данного элемента. Возникновение этой сверхтонкой структуры связано с наличием изотопов. При исследовании спектра одного выделенного изотопа остается только одна компонента сверхтонкой структуры данного типа. Для легких элементов возникновение такой сверхтонкой структуры объясняется простыми механическими соображениями. В § 58, рассматривая атом водорода, мы считали ядро неподвижным. На самом деле ядро и электрон вращаются вокруг общего центра массы (рис. 267). Расстояние от ядра до центра масс очень невелико, оно равно примерно где расстояние до электрона, масса электрона, масса ядра.

Рис. 267. Вращение ядра и электрона вокруг общего центра масс.

В результате энергия атома приобретает несколько иное значение, что приводит к изменению постоянной Ридберга

где значение постоянной Ридберга, соответствующее неподвижному ядру

Таким образом, зависит от а следовательно, и частоты линий должны зависеть от Последнее обстоятельство и послужило основой для спектроскопического открытия тяжелого водорода В 1932 г. Юри, Мэффи и Бриквид обнаружили в спектре водорода слабые спутники линии серии Бальмера.

Предположив, что эти спутники соответствуют линиям тяжелого изотопа водорода с атомным весом, равным двум, они вычислили, пользуясь (1), длины волн и сравнили их с экспериментальными данными.

Согласно формуле (1) у элементов со средними и большими атомными весами изотопический эффект должен быть исчезающе мал.

Этот вывод подтверждается экспериментально для элементов со средними весами, но, как это ни странно, находится в резком противоречии с данными для тяжелых элементов. У тяжелых элементов явно наблюдается изотопическая сверхтонкая структура. Согласно имеющейся теории в данном случае играет роль уже не масса, а конечные размеры ядра.

Определение метра в системе СИ (ГОСТ 9867-61) учитывает роль сверхтонкой структуры указанием изотопа криптона: «Метр - длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями атома криптона 86».

Второй тип сверхтонкой структуры не связан с наличием смеси изотопов; в частности, сверхтонкая структура данного типа наблюдается у висмута, имеющего только один изотоп.

Второй тип сверхтонкой структуры имеет различный вид у различных спектральных линий одного и того же элемента. Второй тип сверхтонкой структуры объяснен Паули, приписавшим ядру собственный механический вращательный момент (спин), кратный

Рис. 268. Происхождение сверхтонкой структуры желтых линий натрия.

Полный вращательный момент атома равен векторной сумме ядерного момента и момента электронной оболочки. Полный вращательный момент должен быть квантован, как все атомные моменты. Поэтому опять возникает пространственное квантование - дозволены только определенные ориентации вращательного момента ядра по отношению к вращательному моменту электронной оболочки. Каждой ориентации соответствует определенный подуровень энергии атома Как и в мультиплетах, здесь различным подуровням соответствует различный запас магнитной энергии атома. Но масса ядра в тысячи раз больше массы электрона, и поэтому магнитный момент ядра примерно в такое же число раз меньше магнитного момента электрона. Таким образом, изменения ориентации ядерного момента должны вызывать лишь очень небольшие изменения энергии, проявляющиеся в сверхтонкой структуре линий. На рис. 268 изображены схемы сверхтонкой структуры натрия. Справа от каждого уровняэнергиистоитчислоя, характеризующее полный вращательный момент. Спин атомного ядра натрия оказался равным

Как видно из рисунка, каждая из желтых линий натрия состоит из большого числа компонент, которые при недостаточном разрешении выглядят, как два узких дублета. Определенные из анализа сверхтонкой структуры вращательные моменты ядер (в частности, для азота оказались в противоречии с гипотезой о существовании электронов в составе ядра, что и было использовано Д. Д. Иваненко для утверждения, что ядра состоят из протонов и нейтронов (§ 86).

В дальнейшем (с 1939 г.) для определения ядерных моментов стали применять гораздо более точный радиоспектрографический метод Раби.

Радиоспектроскопическая схема Раби для определения ядерных магнитных моментов представляет собой как бы две последовательно расположенные установки Штерна - Герлаха (стр. 317) с взаимно противоположными направлениями неоднородных магнитных полей. Молекулярный пучок пронизывает последовательно обе установки. Если в первой установке молекулярный пучок отклоняется, например, направо, то во второй установке он отклоняется налево. Действие одной установки компенсирует действие другой. Между этими двумя установками расположено устройство, нарушающее компенсацию. Оно состоит из электромагнита, создающего однородное магнитное поле, и электродов, соединенных с генератором высокочастотных колебаний. Однородное магнитное поле направлено параллельно магнитному полю в первой установке Штерна - Герлаха.

Частица с магнитным моментом направленным под углом к направлению поля обладает потенциальной энергией (т. II, § 58). Этим же углом определяется величина отклонения пучка в первой установке Штерна - Герлаха. Под действием высокочастотного поля ориентация магнитного момента может измениться и магнитная энергия станет равной Это изменение магнитной энергии должно быть равно энергии фотона, вызвавшего переход (абсорбция или вынужденный переход, § 73):

Возможные значения определяются законом пространственного квантования. Отклонение пучка во второй установке зависит от величины угла Поскольку угол не равен углу это отклонение не будет равно отклонению в первой установке и компенсация нарушится. Нарушение компенсации отклонений наблюдается только при частотах, удовлетворяющих указанному соотношению; иначе говоря, наблюдаемый эффект является резонансным эффектом, что чрезвычайно повышает точность метода. По измеренным частотам с большой точностью вычисляются магнитные моменты ядер

Однако обычная оптическая спектроскопия сохраняет свое значение в полной мере для исследования изотопических эффектов, где радиоспектроскопия принципиально неприменима. Изотопические эффекты представляют особый интерес для теории ядерных сил и внутриядерных процессов.

За последние годы спектроскописты опять вернулись к тщательному изучению спектра водорода. Спектр водорода оказался буквально неисчерпаемым источником новых открытий.

В § 59 уже говорилось, что при исследовании аппаратурой с большой разрешающей способностью каждая линия спектра водорода оказывается двой ной. Долгое время считали, что теория этих тонких деталей спектра водорода находится в прекрасном согласии с опытными данными. Но, начиная с 1934 г., спектроскописты стали осторожно указывать на наличие небольших расхождений между теорией и опытом. Расхождения лежали в пределах точности измерений. О малости эффектов можно судить по следующим цифрам: линия согласно теории, должна в основном состоять из двух линий со следующими волновыми числами: 15233,423 и Теоретическая разность волновых чисел составляет всего т. е. тысячную долю процента от каждого вол нового числа. Эксперимент дал для этой разности величину, примерно на 2% меньшую Майкельсон в свое время говорил, что «мы должны искать наши будущие открытия в шестом десятичном знаке». Здесь речь идет о расхождении в восьмом десятичном знаке. В 1947 г. Лэмб и Ризерфорд вернулись к этой же задаче, но уже с использованием последних достижений техники физического эксперимента. Старая теория приводила к схеме нижних энергетических уровней для линии изображенной на рис. 269.

- (мультиплетное расщепление), расщепление уровней энергии и спектр. линий атомов, молекул и кристаллов, обусловленное спин орбитальным взаимодействием. Число подуровней, на к рое расщепляется уровень энергии, зависит от числа возможных ориентации… … Физическая энциклопедия

Тонкая структура - В атомной физике тонкая структура (мультиплетное расщепление) описывает расщепление спектральных линий атомов, которое определяется разницей в энергетических уровнях различных атомных орбиталей. Однако при более детальном исследовании каждая… … Википедия

Тонкая структура - мультиплетное расщепление, расщепление уровней энергии и спектральных линий атомов, молекул и кристаллов, обусловленное спин орбитальным взаимодействием (См. Спин орбитальное взаимодействие). Число подуровней, на которое расщепляется… …

Структура (значения) - Cтруктура (от лат. structūra «строение»): Содержание 1 Основное значение 2 Другие значения (используются наряду с … Википедия

Сверхтонкая структура - сверхтонкое расщепление уровней, расщепление уровней энергии (См. Уровни энергии) атома на близко расположенные подуровни, вызванное взаимодействием магнитного момента ядра с магнитным полем атомных электронов. Энергия (E этого… … Большая советская энциклопедия

Боровская модель атома - Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

Формула Зоммерфельда-Дирака - Движение электрона вокруг атомного ядра в рамках классической механики можно рассматривать как линейный осциллятор, который характеризуется адиабатичным инвариантом, представляющим собой площадь эллипса (в обобщенных координатах): где… … Википедия

Формула Зоммерфельда - Дирака - Движение электрона вокруг атомного ядра в рамках классической механики можно рассматривать как «линейный осциллятор», который характеризуется «адиабатичным инвариантом», представляющим собой площадь эллипса (в обобщенных координатах): где … … Википедия

Зоммерфельд, Арнольд - Арнольд Зоммерфельд Arnold Sommerfeld Зоммерфельд в … Википедия

СПЕКТРОСКОПИЯ - раздел физики, посвященный изучению спектров электромагнитного излучения. Здесь мы рассмотрим оптическую спектроскопию часто называют просто спектроскопией. Свет это электромагнитное излучение с длиной волны l от 10 3 до 10 8 м. Этот диапазон… … Энциклопедия Кольера

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры испускания, поглощения и комбинационного рассеяния света (КРС), принадлежащие свободным или слабо связанным между собой молекулам. Типичные М. с. полосатые, они наблюдаются в виде совокупности более или менее узких полос в УФ, видимой и… … Физическая энциклопедия