Уравнения максвелла и волновое уравнение. Уравнения максвелла и их физический смысл

1. Уравнения Максвелла и волновое уравнение. Электромагнитное поле описывается уравнениями Максвелла: Рассмотрим однородную и изотропную, электрически нейтральную, непроводящую среду.

1. Уравнения Максвелла и волновое уравнение. В рассматриваемой среде (ε = const. , μ = const. , = 0) эти уравнения можно переписать так: (1) (2) (3) (4) Вычислим ротор от правой и левой части уравнения (1).

1. Уравнения Максвелла и волновое уравнение. Согласно уравнению (4) После вычисления ротора от левой части уравнения (1) получаем:

1. Уравнения Максвелла и волновое уравнение. Вычислим ротор от правой части уравнения (1). Согласно уравнению (3) После вычисления ротора от правой и левой части уравнения (1) получаем:

1. Уравнения Максвелла и волновое уравнение. Сравним полученное уравнение с общим видом дифференциального волнового уравнения: где v – фазовая скорость распространения волны. Полученное нами уравнение для напряжённости электрического поля совпадает волновым уравнением, если Решениями волнового уравнения являются плоские волны вида

1. Уравнения Максвелла и волновое уравнение. Решениями волнового уравнения для вектора напряжённости электрического поля также являются плоские волны. В данном случае в пространстве распространяются колебания напряжённости электрического поля. Фазовая скорость распространения в пространстве таких колебаний:

1. Уравнения Максвелла и волновое уравнение. Аналогично можно вывести волновое уравнение, рассматривая напряжённость магнитного поля. В рассматриваемой среде (ε = const. , μ = const. , = 0): (1) (2) (3) (4) Вычислим ротор от правой и левой части уравнения (3). Выполним преобразования, как и в воспользуемся уравнением (2) и получим: предыдущем случае,

1. Уравнения Максвелла и волновое уравнение. Это уравнение можно переписать так: где - фазовая скорость волны. - решение волнового уравнения, уравнение плоской волны. Отметим, что решения одинаковы как для электрического поля, так и для магнитного. Колебания напряжённостей электрического и одновременно происходят поле магнитного одинаковой скоростью. Эти колебания совпадают по фазе. Колебания напряжённостей электрического и магнитного полей, распространяющиеся в пространстве, называются электромагнитными волнами.

1. Уравнения Максвелла и волновое уравнение. Фазовая скорость электромагнитной волны В вакууме, когда ε = 1 и μ = 1, В некоторой среде, когда ε > 1 и μ > 1, В оптике величина n называется показателем преломления. Физический смысл показателя преломления - он показывает, во сколько раз скорость света (ЭМВ) в данной среде меньше, чем в вакууме.

1. Уравнения Максвелла и волновое уравнение. Основные выводы: 1. Уравнения Максвелла допускают волновые решения. 2. Электромагнитная полна представляет собой колебания напряженностей электрического и магнитного полей, распространяющихся в пространстве. 3. Скорость распространения ЭМВ в вакууме 4. Скорость распространения ЭМВ в любой диэлектрической среде меньше, чем в вакууме: n – показатель преломления среды.

2. Экспериментальное открытие электромагнитных волн. Схема опыта Герца. Джеймс Кларк Максвелл (18311879) Генрих Рудольф Герц (1857 - 1894)

3. Поперечность ЭМВ. Некоторые свойства ЭМВ мы уже отметили: 1. Скорость распространения ЭМВ в вакууме 2. Скорость распространения ЭМВ в любой диэлектрической среде меньше, чем в вакууме: n – показатель преломления среды. Ещё одним важнейшим свойством ЭМВ является её поперечность.

3. Поперечность ЭМВ. Если плоская ЭМВ распространяется вдоль оси OX выбранной нами системы отсчёта, то её уравнение можно записать так: Здесь ω – циклическая (круговая) частота колебаний волны, k – волновое число. Известно, что волновые поверхности плоской волны - плоскости. Если волна распространяется вдоль оси OX, то её волновые поверхности есть плоскости, параллельные плоскости YZ (перпендикулярные OX).

3. Поперечность ЭМВ распространяется вдоль оси OX, изменение векторов E и H описывается уравнениями Каждая из волновых поверхностей характеризуется одним значением координаты X. Поэтому в пределах одной волновой поверхности в данный момент времени значения вектора напряжённости одинаковы. Это справедливо и для вектора E и для вектора H. Значения всех трёх компонент вектора E и всех трёх компонент вектора H зависят только от координаты X и не зависят от координат Y и Z.

3. Поперечность ЭМВ. Рассмотрим уравнение, распространение ЭМВ: В левой части этого уравнения То же по компонентам: описывающее

3. Поперечность ЭМВ. В направлениях, перпендикулярных направлению распространения волны, производные по времен от H нулю не равны, следовательно, в этих направлениях может существовать переменное магнитное поле. В направлении, параллельном направлению распространения волны, может существовать только стационарное магнитное поле.

3. Поперечность ЭМВ. Если рассмотреть уравнение, описывающее распространение ЭМВ и, как и в предыдущем случае, переписать его в виде проекций на оси координат, и учесть, что все компоненты вектора H зависят только от координаты x, получим В направлениях, перпендикулярных направлению распространения волны, может существовать переменное электрическое поле. В направлении, параллельном направлению распространения волны, может существовать только стационарное электрическое поле.

4. Поляризация ЭМВ. Если колебания вектора напряжённости электрического поля в волне каким-либо образом упорядочены, волна называется поляризованной. Если колебания вектора напряжённости электрического поля в волне происходят в одной плоскости, волна называется линейно поляризованной. Если плоскость, в которой происходят колебания вектора напряжённости электрического поля в волне вращается, волна называется поляризованной по кругу (по эллипсу).

5. Соотношение между E и H в ЭМВ. Рассмотрим уравнение, описывающее распространение ЭМВ: В левой части этого уравнения

5. Соотношение между E и H в ЭМВ. Учтём, что вектор E зависит только от координаты x Рассмотрим уравнение, описывающее распространение ЭМВ: В левой части этого уравнения

5. Соотношение между E и H в ЭМВ. Учтём, что вектор H зависит только от координаты x Решениями волнового уравнения являются плоские волны (волна распространяется вдоль OX, векторы напряжённостей перпендикулярны)

5. Соотношение между E и H в ЭМВ. Как мы установили ранее, Подставим в это уравнение выражения дл напряжённостей полей. Это соотношение должно выполняться в любой момент времени и в точке с любой координатой x.

5. Соотношение между E и H в ЭМВ. Волновое число k связано с циклической частотой ω соотношением

6. Вектор Умова-Пойнтинга. Известно, что плотность энергии электрического поля а плотность энергии магнитного поля Эти выражения можно получить из уравнений Максвелла. Рассмотрим уравнения: (1) (2) Умножим уравнение (1) на вектор H скалярно, а уравнение (2) умножим скалярно на вектор E.

6. Вектор Умова-Пойнтинга. Аналогично преобразуем второе уравнение: Мы рассматриваем непроводящую среду, поэтому j = 0. Итого, мы получили два уравнения: Вычтем из второго уравнения первое:

6. Вектор Умова-Пойнтинга. Выясним физический смысл полученного выражения. Обозначим - вектор Умова-Пойнтинга. - плотность энергии электромагнитного поля. Преобразуем левую часть уравнения:

6. Вектор Умова-Пойнтинга. Применим к левой части уравнения теорему Остроградского-Гаусса: Здесь - поверхность, окружающая объём V. Чтобы равенство не нарушилось, вычислим интеграл по объёму V и в правой части: Здесь Wэм - энергия электромагнитного поля в объёме V. Итого, получилось:

6. Вектор Умова-Пойнтинга. Таким образом, поток вектора Умова-Пойнтинга через некоторую замкнутую поверхность равен убыли энергии электромагнитного поля в объёме, ограниченном этой замкнутой поверхностью. Согласно определению, Таким образом, Эти векторы образуют правую тройку. E и H лежат в плоскости, перпендикулярной направлению распространения волны, направление S совпадает с направлением распространения волны.

7. Энергия, переносимая электромагнитной волной. Известно, что плотность энергии электромагнитного поля Если в пространстве распространяется электромагнитная волна, то в данной точке пространства Плотность энергии магнитного поля В любой момент времени

7. Энергия, переносимая электромагнитной волной. Введём новую величину, S, и назовём её модулем плотности потока энергии. То есть эта величина будет равна энергии, проходящей через единицу площади в единицу времени W – энергия, - площадь, t – время. Модуль плотности потока энергии (эта величина равна энергии, проходящей через единицу площади в единицу времени) равен модулю вектора Умова – Пойнтинга.

7. Энергия, переносимая электромагнитной волной. Энергия электромагнитной волны, проходящая через единицу площади в единицу времени, равна модулю вектора Умова – Пойнтинга.

Теперь стоило бы заняться немного математикой; мы запишем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.

Начнем с - простейшего из уравнений. Мы знаем, что оно подразумевает, что - есть ротор чего-то. Поэтому, если вы записали

то считайте, что уже решили одно из уравнений Максвелла. (Между прочим, заметьте, что оно остается верно для другого вектора , если , где - любое скалярное поле, потому что ротор - нуль и - по-прежнему то же самое. Мы говорили об этом раньше.)

Теперь разберем закон Фарадея , потому что он не содержит никаких токов или зарядов. Если мы запишем как и продифференцируем по , то сможем переписать закон Фарадея в форме

.

Поскольку мы можем дифференцировать сначала либо по времени, либо по координатам, то можно написать это уравнение также в виде

. (18.17)

Мы видим, что - это вектор, ротор которого равен нулю. Поэтому такой вектор есть градиент чего-то. Когда мы занимались электростатикой, у нас было , и мы тогда решили, что - само градиент чего-то. Пусть это градиент от (минус для технических удобств). То же самое сделаем и для ; мы полагаем

. (18.18)

Мы используем то же обозначение , так что в электростатическом случае, когда ничто не меняется со временем и исчезает, будет нашим старым . Итак, закон Фарадея можно представить в форме

. (18.19)

Мы уже решили два из уравнений Максвелла и нашли, что для описания электромагнитных полей и нужны четыре потенциальные функции: скалярный потенциал и векторный потенциал , который, разумеется, представляет три функции.

Итак, определяет часть , так же как и . Что же произойдет, когда мы заменим на ? В общем, должно было бы измениться, если не принять особых мер. Мы можем, однако, допустить, что изменяется так, чтобы не влиять на поля и (т. е. не меняя физики), если будем всегда изменять и вместе по правилам

. (18.20)

Тогда ни , ни , полученные из уравнения (18.19), не меняются.

Раньше мы выбирали , чтобы как-то упростить уравнения статики. Теперь мы не собираемся так поступать; мы хотим сделать другой выбор. Но подождите немного, прежде чем мы скажем, какой это выбор, потому что позднее станет ясно, почему вообще делается выбор.

Сейчас мы вернемся к двум оставшимся уравнениям Максвелла, которые свяжут потенциалы и источники и . Раз мы можем определить и из токов и зарядов, то можно всегда получить и из уравнений (18.16) и (18.19) и мы будем иметь другую форму уравнений Максвелла.

Начнем с подстановки уравнения (18.19) в ; получаем

;

это можно записать еще в виде

. (18.21)

Таково первое уравнение, связывающее и с источниками.

Наше последнее уравнение будет самым трудным. Мы начнем с того, что перепишем четвертое уравнение Максвелла:

,

а затем выразим и через потенциалы, используя уравнения (18.16) и (18.19):

.

Первый член можно переписать, используя алгебраическое тождество ; мы получаем

. (18.22)

Не очень-то оно простое!

К счастью, теперь мы можем использовать нашу свободу в произвольном выборе дивергенции . Сейчас мы собираемся сделать такой выбор, чтобы уравнения для и для разделились, но имели одну и ту же форму. Мы можем сделать это, выбирая

. (18.23)

Когда мы поступаем так, то второе и третье слагаемые в уравнении (18.22) погашаются, и оно становится много проще:

. (18.24)

И наше уравнение (18.21) для принимает такую же форму:

. (18.25)

Какие красивые уравнения! Они великолепны прежде всего потому, что хорошо разделились - с плотностью заряда стоит , а с током стоит . Далее, хотя левая сторона выглядит немного нелепо - лапласиан вместе с , когда мы раскроем ее, то обнаружим

. (18.26)

Это уравнение имеет приятную симметрию по , , , ; здесь нужно, конечно, потому, что время и координаты различаются; у них разные единицы.

Уравнения Максвелла привели нас к нового типа уравнению для потенциалов и , но с одной и той же математической формой для всех четырех функций , , и . Раз мы научились решать эти уравнения, то можем получить и из и . Мы приходим к другой форме электромагнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще. и

Основные уравнения классической электродинамики (система уравнений Максвелла) по праву являются общепризнанными уравнениями и широко применяются в физике, радиофизике и электронике. Однако эти уравнения не были получены из общих физических законов, что не позволяло считать их абсолютно точными, допускало различного рода манипуляции с ними. Тем не менее, эти уравнения точные и выводятся из общих принципов физики и основ векторной алгебры .

1. Вывод закона электромагнитной индукции Фарадея

Закон электромагнитной индукции Фарадея можно получить из уравнения для электромагнитных сил, действующих на точечный электрический заряд :

Такая ситуация возникает в проводнике с электрическим током высокой частоты, когда сила, действующая на электрон со стороны первичного электрического поля изменяется настолько быстро, что оказывается в противофазе с силой инерции электронов.

Сократим заряд в равенстве (2) и применим к обеим частям этого равенства операцию «ротор»:

. (3)

Пусть, например, ось z совпадает с направлением аксиального вектора B , тогда радиус-вектор будет иметь вид: r =xi +yj , где i и j – единичные векторы в направлениях осей координат x и y , соответственно. Радиальный векторr не имеет третьей составляющей вдоль оси z , поэтому второе слагаемое в (3) равно –2(∂B /∂t). Первое же слагаемое в уравнении (3) равно ∂B /∂t. В результате, после преобразования правой части последнего равенства, получаем:

. (4)

То есть из электромагнитного силового уравнения (1) в том случае, когда сила, действующая на электрон со стороны магнитного поля, полностью уравновешивается силой со стороны электрического поля, следует закон электромагнитной индукции Фарадея (4), − одно из основных уравнений электродинамики.

Уравнения (2) – (4) не зависят от того, имеется или отсутствует электрон в данной точке пространства. В результате такой независимости электрического и магнитного полей от электрического заряда уравнение (4) отражает пространственно-временные свойства самих изменяющихся полей, представимых в виде единого электромагнитного поля. При этом закон Фарадея (4) не только представляет собой закон электромагнитной индукции, но является и основным законом взаимного преобразования электрического и магнитного полей, − неотъемлемым свойством электромагнитного поля.

2. Вывод уравнения Максвелла

Прежде, чем приступить к выводу уравнения Максвелла, необходимо дополнить векторную алгебру еще одним векторным оператором.

2.1. Определение векторного оператора, выполняющего действие, обратное векторному преобразованию дифференциального векторного оператора «ротор»

Дифференциальный векторный оператор «ротор» выполняет операцию преобразования векторов в пространстве и операцию дифференцирования, то есть является сложным оператором, осуществляющим сразу два вида действий. Это прямо следует из его определения :

,

где а – вектор, i , j , k – единичные векторы в направлении осей прямоугольной (декартовой) системы координат x , y и z , соответственно. При этом оператор, обратный оператору «ротор», в векторном анализе не определен, хотя каждое из выполняемых им преобразований, в принципе, обратимо.

Геометрическая иллюстрация пространственного преобразования вектора а в вектор rot(a ) , осуществляемая оператором «ротор», показана на Рис. 1.


Рис. 1. Геометрическое представление вектора а и векторного поля, образованного оператором «ротор».

2.2. Определение 1. Если два взаимосвязанных векторных поля, представленные векторами а и b , имеют производные по пространственным переменным x , y , z (в виде rota и rotb )и производные по времени, ¶ а t и ¶ b t , причем производная вектора а по времени ортогональна производным по пространственным переменным вектора b , и наоборот, производная по времени вектора b ортогональна производным по пространственным переменным вектораа , то существует векторный оператор, осуществляющий пространственное преобразование векторного поля, не затрагивающее операцию дифференцирования, который условно назовем оператором «rerot », (противоположно закрученный или «реверсивный ротор») такой, что:

и ; (5)

и . (5*)

2.3. Свойства векторного оператора «реверсивный ротор»

2.3.1. Векторный оператор «реверсивный ротор» действует только на производные вектора.

2.3.2. Векторный оператор «реверсивный ротор» располагается перед производной вектора, на которую он действует.

2.3.3. Константы и числовые коэффициенты при производных вектора могут быть вынесены за пределы действия векторных операторов:

где c - константа.

2.3.4. Векторный оператор «реверсивный ротор» действует на каждое из слагаемых уравнения, содержащего сумму векторных производных:

где c и d - константы.

2.3.5. Результат действия векторного оператора «реверсивный ротор» на ноль есть ноль:

При этом результат действия векторного оператора «реверсивный ротор» на другие константы, в том числе на вектор, согласно пункту 2.3.1, не определен.

2.4. Пример применения оператора «реверсивный ротор»

Применим оператор «реверсивный ротор» к уравнению, содержащему взаимосвязанные векторы a и b :

Если теперь еще раз применить оператор «реверсивный ротор» к вновь образованному равенству (**), то получим:

или

, или окончательно:

. ((*))

Последовательное двойное (или любое четное) применение оператора «реверсивный ротор» приводит к исходному равенству. Этим самым векторный оператор «реверсивный ротор» осуществляет не только взаимное преобразование дифференциальных уравнений взаимосвязанных векторных полей, но и устанавливает эквивалентность этих уравнений.

Геометрически это выглядит так. Оператор «ротор» дифференцирует и как бы закручивает прямолинейное векторное поле, делая его вихревым и ортогональным исходному векторному полю. Векторный оператор «реверсивный ротор» выполняет векторное преобразование, которое как бы раскручивает вихревое поле, закрученное оператором «ротор», превращая его в изменяющееся невихревое поле, представленное производной вектора по времени. Поскольку интегрирование не производится, производная вектора по времени соответствует изменению величины вектора. В результате имеем изменение вектора, величина которого изменяется в единственном направлении, ортогональном пространственным переменным оператора «ротор». И наоборот, векторный оператор «реверсивный ротор» закручивает невихревое изменяющееся векторное поле, представленное производной вектора по времени, превращая его в вихревое пространственное векторное поле, ортогональное исходной производной вектора по времени. Так как направление «кручения» оператора «реверсивный ротор» противоположно направлению вращения, осуществляемому оператором «ротор», то знак вновь образованного вихревого поля выбирается противоположным (отрицательным). То есть векторный оператор «реверсивный ротор» выполняет действие, обратное пространственному преобразованию оператора «ротор» на всем «пространстве» производных векторных полей. В то же время векторный оператор «реверсивный ротор» сам не дифференцирует вектор, на производную которого он действует. Этим самым осуществляется тождественное обратимое векторное преобразование.

Если ввести в векторный анализ интегральный векторный оператор, восстанавливающий не производную вектора, а сам вектор из ротора вектора (условно назовем такой оператор обратным ротором, или «rot -1 »), то такой оператор наряду с обратным векторным преобразованием одновременно должен производить операцию интегрирования.

Однако, в силу неоднозначности математической операции интегрирования, полностью обратный «ротору» оператор rot -1 не осуществляет однозначное обратное векторное преобразование.

2.5. Применение векторного оператора «реверсивный ротор» к физическим полям

При применении векторного оператора «реверсивный ротор» к физическим векторным полям необходимо учитывать изменение размерности правой и левой частей уравнения из-за перестановки переменных x , y , z и t при преобразовании. Обозначим размерность координат – метр (L ), а времени – секунда (T ).

Определение 2. Для физических векторных полей векторный оператор «реверсивный ротор», определяется следующим образом:

и ; (6)

и . (6*)

Обозначая размерное отношение L/T , как константу v , имеющую размерность скорости, [м/с], уравнения (6.4) и (6.4*) можно представить в виде:

и ; (7)
и . (7*)

2.6. Применение оператора «реверсивный ротор» к физическим полям

Применим векторный оператор «реверсивный ротор», определенный уравнениями (7), (7*), к уравнению (4), связывающему реальные физические поля E и B в электродинамике:

;

, что преобразуется к виду:

(8)
>.

Электродинамическая постоянная «v » не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия, 2.99792458Ч 10 8 м/c, которая называется также скоростью света в вакууме.

То есть с помощью векторного преобразования «реверсивный ротор» из уравнения (4), представляющего собой закон электромагнитной индукции Фарадея, естественным образом вытекает одно из основных уравнений электродинамики - уравнение Максвелла (8), которое не следует ни из эксперимента, ни из известных физических законов. Уравнения (4) и (8) являются взаимосвязанными, трансформируемыми друг в друга при помощи векторного преобразования, что соответствует их физической эквивалентности. Поэтому справедливость одного из этих уравнений, установленная в виде физического закона (в данном случае - это закон электромагнитной индукции Фарадея (4)) является достаточным условием для утверждения о справедливости второго уравнения (уравнения Максвелла (8)) в качестве эквивалентного физического закона.

2.7. Трансформация векторных полей

Если исходить из определения оператора «ротор», то действие векторного оператора «обратный ротор», казалось бы, можно представить в виде, показанном на Рис. 2, где предполагается некоторая тождественность векторных полей до и после векторного преобразования дифференциальным векторным оператором «ротор».

Проверим это предположение. Применим оператор «реверсивный ротор» к уравнению:

, откуда следует:

Полученное равенство изменяет направление векторов в исходном определении дифференциального векторного оператора «ротор», что недопустимо.

Поэтому .

Применение векторного оператора «реверсивный ротор» к производным одного и того же векторного поля показывает принципиальное различие между векторным полем до применения, и векторным полем после применения оператора «ротор». Это означает необходимость представлять поле вектора а и поле вектора rot(а ) как трансформируемые друг в друга, но различные векторные поля.

Исходное векторное поле, представленное вектором а , будем считать первичным (причиной), а поле, образованное векторным преобразованием оператора «ротор», будем считать вторичным полем (следствием действия оператора «ротор») и обозначим его, как поле векторов b .


Рис. 2. Результат отождествления векторных полей до и после векторного преобразования «ротор». Направление полей не соответствует исходному определению оператора «ротор», показанному на Рис. 1, — «правый винт» превращается в «левый винт».

Тогда обратное преобразование векторных полей, не затрагивающее операции дифференцирования, во введенных таким образом обозначениях будет иметь вид, показанный на Рис. 3.


Рис. 3. Определение векторного преобразования, обратного операции «ротор», не затрагивающего операции дифференцирования. Разделение векторных полей выполнено по признаку причинно-следственных отношений. Исходное поле представлено вектором а (причина), а поле, образованное операцией «ротор», представлено вектором b (следствие).

В электродинамике в некоторых простейших случаях переход к вращающейся системе отсчета, внутри которой исчезает вращение, приводит к отсутствию сил со стороны магнитного поля, и силовое воздействие может быть представлено только силой со стороны электрического поля. Но из этого никак не следует вывод, что магнитного поля нет или оно всегда может быть заменено электрическим полем. Частный случай векторного поля, взятого в отдельной изолированной системе отсчета, относится только к данной выбранной системе, в которой осуществляется ограниченное по степеням свободы движение электрического заряда.

Поскольку в пространстве существуют и прямолинейные векторные поля, и вращающиеся замкнутые векторные поля, а находиться в двух системах отсчета одновременно невозможно, то в общем случае выбором системы координат нельзя свести одно поле к другому. Источник этих полей один – это электрические заряды. Электрические заряды создают вокруг себя электрическое поле (всесторонне направленное векторное поле), а движение электрических зарядов создает магнитное поле (замкнутое круговое векторное поле). При этом, естественно, прямолинейное движение электрических зарядов создает вокруг них круговое магнитное поле, а круговое движение электрических зарядов (равно как вращение электрически заряженных частиц вокруг собственной оси) создает прямолинейное в пространстве магнитное поле, заключенное в объеме, ограниченном радиусом вращения.

2.8. Скорость распространения электромагнитного взаимодействия

Скорость преобразования векторных полей друг в друга не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия в свободном пространстве (вакууме), 2.99792458Ч 10 8 м/c, и эта величина по праву называется электродинамической постоянной.

Таким образом, изменение электрического и магнитного полей, осуществляемое в трехмерном пространстве, имеет свойство взаимного преобразования векторов, и это свойство в электродинамике осуществляется посредством закона электромагнитной индукции Фарадея. Если считать такое преобразование прямым, то обратное преобразование векторных полей осуществляется при помощи уравнения, полученного Максвеллом интуитивным путем, и которое можно получить при помощи векторного оператора «реверсивный ротор». Взаимное преобразование электрического и магнитного полей, которое осуществляется без источников электрического заряда, представляет собой один из особых видов волнового движения - поперечную электромагнитную волну, которая переносит электромагнитную энергию в свободном пространстве с абсолютной скоростью преобразования полей. Но при этом источником энергии электромагнитной волны всегда являются ускоренно движущиеся электрические заряды.

3. Уравнения источников электромагнитных полей.

Оставшиеся два из четырех основных уравнений системы уравнений Максвелла лишь устанавливают факт наличия в природе электрических зарядов, создающих электрическое поле (теорема Гаусса, которая прямо следует из закона Кулона):

и факт отсутствия в природе магнитных зарядов:

Литература

  1. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005.
  2. Сокол-Кутыловский О.Л. Русская физика. Екатеринбург, 2006.
  3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ (под редакцией Г. Гроше и В. Циглера), М., «Наука», 1980.

Сокол-Кутыловский О.Л., Вывод основных уравнений электродинамики // «Академия Тринитаризма», М., Эл № 77-6567, публ.13648, 11.08.2006


Система уравнений Максвелла включает в себя четыре основных уравнения

, (3.2)

, (3.3)

. (3.4)

Эта система дополняется тремя материальными уравнениями, определяющими связь между физическими величинами, входящими в уравнения Максвелла:

(3.5)

Вспомним физический смысл этих математических фраз.

В первом уравнении (3.1) утверждается, что электростатическое поле может быть создано только электрическими зарядами.В этом уравнении- вектор электрического смещения, ρ - объемная плотность электрического заряда.

Поток вектора электрического смещения через любую замкнутую поверхность равен заряду, заключенному внутри этой поверхности.

Как свидетельствует эксперимент, поток вектора магнитной индукции через замкнутую поверхность всегда равен нулю (3.2)

Сопоставление уравнений (3.2) и (3.1) позволяет сделать вывод о том, что магнитные заряды в природе отсутствуют.

Огромный интерес и важность представляют уравнения (3.3) и (3.4). Здесь рассматриваются циркуляции векторов напряженности электрического () и магнитного () полей по замкнутому контуру.

В уравнении (3.3) утверждается, что переменное магнитное поле () является источником вихревого электрического поля ().Это не что иное, как математическая запись явления электромагнитной индукции Фарадея.

В уравнении (3.4) устанавливается связь магнитного поля и переменного электрического. Согласно этому уравнению магнитное поле может быть создано не только током проводимости (), но и переменным электрическим полем.

В этих уравнениях:

- вектор электрического смещения,

H - напряженность магнитного поля,

E - напряженность электрического поля,

j - плотность тока проводимости,

μ - магнитная проницаемость среды,

ε -диэлектрическая проницаемость среды.

    1. Электромагнитные волны. Свойства электромагнитных волн

В прошлом семестре, завершая рассмотрение системы уравнений классической электродинамики Максвелла, мы установили, что совместное решение двух последних уравнений (о циркуляции векторов и) приводит к дифференциальному волновому уравнению.

Так мы получили волновое уравнение «Y» волны:

. (3.6)

Электрическая компонента y – волны распространяется в положительном направлении оси X с фазовой скоростью

(3.7)

Аналогичное уравнение описывает изменение в пространстве и во времени магнитного поля y – волны:

. (3.8)

Анализируя полученные результаты, можно сформулировать ряд свойств, присущих электромагнитным волнам.

1. Плоская «y» - волна является линейно поляризованной поперечной волной. Векторы напряженности электрического (), магнитного () поля и фазовой скорости волны () взаимно перпендикулярны и образуют «правовинтовую» систему (рис.3.1).

2. В каждой точке пространства компонента волны H z пропорциональна напряженности электрического поляE y:

Здесь знаку «+» соответствует волна, распространяющаяся в положительном направлении оси X. Знак «-» - в отрицательном.

3. Электромагнитная волна движется вдоль оси X с фазовой скоростью

Здесь
.

При распространении электромагнитной волны в вакууме (ε = 1, μ = 1) фазовая скорость

Здесь электрическая постоянная ε 0 = 8.85 · 10 -12

магнитная постоянная μ 0 = 4π · 10 -7

.

.

Совпадение скорости электромагнитной волны в вакууме со скоростью света стало первым доказательством электромагнитной природы света.

В вакууме упрощается связь напряженности магнитного и электрического полей в волне.

.

При распространении электромагнитной волны в диэлектрической среде (μ = 1)
и
.

В технике СВЧ интерес представляет в основном поля, изменяющиеся во времени по гармоническому закону (т.е. носят синусоидальный характер).

Пользуясь комплексным методом, запишем векторы электрического и магнитного полей:

,
, (33)

где – круговая частота
.

Подставим эти выражения в I и II – е уравнения Максвелла

,
.

После дифференцирования имеем:

, (34)

. (35)

Уравнение (34) можно преобразовать к виду:

,

где
– комплексная относительная диэлектрическая проницаемость с учётом потерь в среде.

Отношение мнимой части комплексной относительной диэлектрической проницаемости к действительной представляет тангенс угла диэлектрических потерь
. Таким образом уравнения Максвелла для гармонических колебаний при отсутствии свободных зарядов
имеют вид:

,(36)

, (37)

, (38)

. (39)

В таком виде уравнения Максвелла неудобны и их преобразуют.

Уравнения Максвелла легко сводятся к волновым уравнениям, в которые входит только один из векторов поля. Определяя
из (37) и подставляя его в (36), получаем:

раскроем левую часть используя формулу III:

Введём обозначения
,тогда с учётом
, получим:

. (40)

Такое же уравнение можно получить относительно

. (41)

Уравнения (40) – (41) получили название уранений Гельмгольца. Они описывают распространение волн в пространстве и являются доказательством того, что изменение во времени электрического и магнитного полей приводит к распространению электромагнитных волн в пространстве.

Эти уравнения справедливы для любой системы координат. При использовании прямоугольной системы координат будем иметь:

, (42)

, (43)

где
– едичничные векторы

Если подставить соотношение (42) и (43) в уравнения (40) и (41), то последние распадаются на шесть независимых уравнений:

,
,

, (44)
, (45)

,
,

где
.

В общем случае в прямоугольной ситеме координат для нахождения составляющих поля необходимо решить одно линейное дифференциальное уравнение второго порядка

,

где – одна из составляющих поля, т.е.
. Общее решение этого уравнения имеет вид

, (46)

где
– функция распределения поля в плоскости фронта волны не зависящая от.

Энергетические соотношения в электромагнитном поле. Теорема Умова-Пойнтинга

Одной из важнейших характеристик электромагнитного поля является его энергия. Впервые вопрос об энергии электромагнитного поля был рассмотрен Максвеллом, который показал, что полная энергия поля, заключённого внутри объёма , складывается из энергии электрического поля:

, (47)

и энергии магнитного поля:

. (48)

Таким образом, полная энергия электромагнитного поля равна:

. (49)

В 1874г. проф. Н. А. Умов ввел понятие о потоке энергии, а в 1880г. это понятие было применено Пойнтингом к исследованию электромагнитных волн. Процесс излучения в электродинамике принято характеризовать, определяя в каждой точке пространства вектор Умова-Пойнтинга.

Физически правильные результаты, согласующиеся как с законом сохранения энергии, так и с уравнениями Максвелла, получается в том случае, если выразить вектор Умова-Пойнтинга через мгновенные значения
и
следующим образом:

.

Возьмём первое и второе уравнения Максвелла и умножим первое на , а второе на
и сложим:

,

где .

Таким образом, уравнение (50) можно записать в виде

,

интегрируя по объему и меняя знаки, имеем:

Перейдем от интеграла по объему к интегралу по поверхности

,

или с учетом
получим:

, то
,
,

. (51)

Полученное уравнение выражает закон сохранения энергии в электромагнитном поле (теорему Умова-Пойнтинга.). Левая часть уравнения представляет собой скорость изменения во времени полного запаса энергии электромагнитного поля в рассмотренном объеме
. Первый член правой части есть количество тепла, выделяющегося в проводящих частях объёмаза единицу времени. Второе слагаемое представляет поток вектора Умова-Пойнтинга через поверхность, ограничивающую объем.Вектор
есть плотность потока энергии электромагнитного поля.
Т.к.
, то направление вектора
можно определить по правилу векторного произведения /правилу буравчика/ (рис. 9). В системеСИ вектор
имеет размерность
.

Рисунок 9 – К определению вектора Умова-Пойнтинга