Мочевая кислота формула структурная. Мочевая кислота Мочевая кислота формула структурная

У человека выглядит линейно: пурины → мочевая кислота → ураты → подагра .

Рассмотрим основные факторы развития заболевания для определения оптимальной схемы лечения подагры.

Мочевая кислота (МК), а так же ее соли – ураты, которые медленно растворяются в воде с выпадением осадка при их повышенной концентрации в крови (геперурикемия) ведут к развитию подагры – заболевания, для которого характерно отложение кристаллов мочевой кислоты и уратов в почечной лоханке, суставах, мышцах с образованием очагов воспаления.

Разберемся, как же развивается подагра, определимся с терминами и определениями связанными с этим заболеванием.

Неорганизованный осадок мочи представлен солями, выпавшими в осадок в виде кристаллов или аморфных масс. Это может быть мочевая кислота, ураты, фосфаты, оксалаты и другие вещества.

Мочевая кислота (acide lithique) вызывается распадом пуринов и нуклеиновой кислоты под воздействием ферментов. Она же выводит избыток пуринов из организма человека, МК образует соли – ураты. Интересно, что МК используется в промышленности для производства кофеина. Аcide lithique является стимулятором центральной нервной системы (ЦНС), как кофе или чай;

Пурины – химические соединения, содержащие небелковый азот которые входят в состав всех живых организмов. Пурины основа всех нуклеиновых кислот, таких как ДНК и РНК, т.е пурины это клеточные ядра. Другими словами пурины входят в строение нашего гена. В организм человека пурины попадают вместе с едой. В одних пищевых продуктах содержание пуринов выше, в других ниже. Пуриносодержащие продукты отображены ниже в таблице. При естественном разрушении пуринов под воздействием ферментов (пищеварении) они образуют мочевую кислоту, которая в нормальных условиях выступает как мощный антиоксидант. Однако у больных подагрой почки не выводят продукт распада пуринов - мочевую кислоту.

В разных частях мясных продуктов содержание пуринов разно в зависимости от интенсивности работы мышц. Например, в куриных ножках пуринов больше, чем в грудке. В мясе хищников пуринов тоже больше. Эта закономерность наблюдается и у рыб, а вот жирность продукта не имеет большого значения для больного подагрой, так как пуриновый и жировые обмены не связаны друг с другом. В белке яиц пуринов практически нет, в отличие от желтка. Нет пуринов также в твороге и не соленых сырах, молоке. При распаде пуринов структура азотистого основания сохраняется и окисляется с образованием мочевой кислоты, которая выводится из организма с мочой;

Пурины в пищевых продуктах измеряются в мг на 100 грамм продукта.

Гиперурикемия – содержание мочевой кислоты в организме человека выше нормы;

Экскреция – процесс выведения из организма человека отходов жизнедеятельности, вредных веществ;

Реабсорбция – это транспортировка веществ (аминокислот, глюкозы, витаминов, минералов) из первичной мочи в кровь. Процесс реабсорбции протекает в почечных канальцах.

Камни. Камни имеют слоистую структуру и представляют собой смесь минералов и органики. Камни согласно химико-физическим свойствам можно подразделить ураты, оксалаты, фосфаты, в меньшей степени карбонаты, цистиновые, ксантиновые, холестериновые и др. камни.

Ураты - это кристаллы и камни образованные из солей мочевой кислоты. Форма уратов круглая, цвет - светло-желтый, реже красный. Ураты обладают гладкой внешней поверхностью, бывают слегка шероховатости. Ураты имеют достаточно высокую плотность. Диета при подагре направлена на ощелачивание мочи, pH мочи должно быть выше 5 ;

Оксалаты – это соли щавелевой кислоты. Оксалаты бывают круглой или округло-вытянутой формой с рядом острых шипов. Оксалаты имеют темно- бурый цвет и плотную консистенцию.

Фосфаты - это камни, состоящие из фосфорнокислых солей. Имеют фосфаты белый или серый цвет. Консистенция фосфатов – рыхлая.

Карбонаты – камни, в состав которых входят карбонаты кальция и магния. Камни белого цвета, мягкие.

Мочевая кислота удаляется из организма человека главным образом с мочой и немного с фекалиями. Она является слабой кислотой и в биологических жидкостях находится в недиссоциированной форме в комплексе с белками или в виде мононатриевой соли – урата.

  • В норме в сыворотке крови ее концентрация составляет 0,15 – 0,47 ммоль/л или 3-7 мг/дл..
  • Из организма ежесуточно выводится от 0,4 до 0,6 г. мочевой кислоты и уратов.
  • Мочевая кислота (МК) присутствует в крови человека в форме моноурата натрия (урата);
  • Моноурат натрия отличается очень низкой растворимостью в воде (0,57ммоль/л, 37 С)
  • С уменьшением температуры – растворимость МК уменьшается и наоборот;
  • Моноурат натрия ниже у вегетарианцев;
  • У мужчин содержание мочевой кислоты в крови выше (0,42 ммоль/л/6,5 мг/100мл – граница нормы), чем у женщин – 5.5 мг/100мл.
  • Содержание МК, которая и вызывает образование подагры существенно различается у разных этнических групп;
  • Мочевая кислота увеличена в крови у лиц с группой крови B(III);
  • Содержание acide lithique в организме повышено у лиц с большей мышечной массой;
  • Содержание мочевой кислоты в организме повышено у лиц с метаболическим синдромом - ожирением, атеросклерозом, гипертонической болезнью, сахарным диабетом;
  • С возрастом содержание мочевой кислоты увеличивается;
  • Мочевая кислота лучше растворяется и соответственно выводится при увеличении щелочности мочи pH, т.е. при подагре следует уменьшить потребление «кислых» продуктов: вина, пива, кваса, кислых соков.
  • Человеку страдающему подагрой нужно улучшать аэрацию организма, больше бывать на свежем воздухе, заниматься дыхательными гимнастиками, к примеру дыхательной гимнастикой по методу Стрельниковой;
  • Утром мочевой кислоты в крови больше на 4-10%, чем вечером;
  • На 90% причиной развития подагры является снижение выведения уратов и только на 10% на развитие подагры влияет увеличение синтеза уратов из acide lithique;
  • Мочевая кислота - это сильный антиоксидант, увеличение acide lithique вызывает курение и воздействие ультрафиолета;
  • У 85% людей с гиперурикемией подагра не развивается.

Разновидности подагры

  1. Почечный тип подагры – это увеличение экскреции уратов;
  2. Метаболический тип подагры – это увеличение образования и отложения уратов.

Стандарт диагностики подагры – это выявление кристаллов урата натрия в суставах или суставной жидкости при поляризующей световой микроскопии. Исследование концентрации мочевой кислоты в крови не достаточно для постановки такого диагноза, как подагра.

Диагностический минимум развития подагры:

  • Клинический анализ крови;
  • Липидограмма;
  • Глюкоза крови;
  • Мочевина, креатинин, мочевая кислота;
  • Электролиты;
  • Общий анализ мочи;
  • ЭКГ;
  • Узи почек.

Кислотно - щелочной баланс, который необходимо учитывать при развитии подагры.

Ниже представлены кислоты образующиеся при употреблении определенных видов пищевых продуктов и напитков, в том числе алкогольных.

  • Из сладостей образуется уксусная кислота;
  • Из мяса, колбас, консервов образуется мочевая кислота, серная и азотная кислототы;
  • Из кофе получается дубильная кислота;
  • Из лимонада получается углекислота;
  • Из кока -колы образуется фосфорная кислота;
  • Вино, винная кислота дают серную кислоту;
  • Сигареты, никотин образуют никотиновую кислоту;
  • Стресс, беспокойство вызывают избыток соляной кислоты;
  • Физическое переутомление синтезирует молочную кислоту.

Речь пойдет об особенностях метаболизма пуриновых оснований. Большинству людей это ни о чем не говорит. Но если вам знакомы слова «подагра», мочекаменная болезнь, инсулинорезистентность, сахарный диабет 2 типа, то знать суть о метаболизме пуринов необходимо. Казалось бы: а хирургия то здесь причем? А притом, что многие специалисты при болях в суставах и высокой мочевой кислоте ставят диагноз «подагра». На самом деле — все намного сложнее. К примеру подагрический артрит может быть при нормальных цифрах мочевой кислоты, и наоборот: высокая мочевая кислота может быть в ряде случаев у здорового человека.

Организм человека в основном состоит из четырех химических элементов, на долю которых приходится 89 % состава: С-углерод (50%), О-кислород(20%), Н-водород(10%) и N-азот (8,5%). Далее идет ряд макроэлементов: кальций, фосфор, калий, сера, натрий, хлор и др. Затем микроэлементы, количество которых очень мало, но они жизненно необходимы: марганец, железо, йод и пр.
Интересен нам будет четвертый в этом количественном списке — азот.

Живой организм — это динамическая система. По простому: вещества в него постоянно поступают (становясь частью организма) и выводятся из него. Основной источник азота для организма — белки. Поступающий с пищей белок в желудочно-кишечном тракте распадается до аминокислот, которые уже и включаются в обмен. Ну а каким образом азотсодержащие вещества выводятся из организма?

В процессе эволюции у животных выработались определенные особенности азотистого обмена.
Причем ключевым в определении этих особенностей будут: условия существования и доступ к воде.

Животных разделяют на три группы, имеющие различия в метаболизме азота:

Аммонио-литические . Конечный продукт азотистого обмена — аммиак, NH3. Сюда относят большую часть водных беспозвоночных и рыб.
Все дело в том, что аммиак — токсичное вещество. И для его выведения нужно очень-очень много жидкости. Благо — он хорошо растворим в воде. С выходом на сушу в ходе эволюции возникла потребность в изменении метаболизма. Так появились:

Уреолитические . У этих животных появился так называемый «цикл мочевины». Аммиак связывается с СО2(углекислый газ). Образуется конечный продукт — мочевина. Мочевина не такое токсичное вещество и для ее выведения требуется заметно меньше жидкости. Кстати мы с вами относимся именно к этой группе. Мочевая кислота в процессе метаболизма в значительно меньших количествах также образуется, но распадается до малотоксичного и хорошо растворимого аллантоина. Но… Кроме человека и человекообразных обезьян. Это очень важно и к этому вернемся.

Урикотелические . Предкам земноводных с уреолитическим обменом пришлось приспосабливаться к засушливым регионам. Это пресмыкающиеся и прямые предки динозавров — птицы. У них конечным продуктом является мочевая кислота. Она очень плохо растворяется в воде и для ее выведения из организма как раз воды много и не требуется. В помете у тех же птиц количество мочевой кислоты очень большое, фактически выводится в полутвердом виде Поэтому птичий помет («гуано») — основная причина коррозии и разрушения металлоконструкций мостов. Лакокрасочное покрытие автомобиля тоже портит — будьте внимательны, мойте сразу.
Это классическая гексагональная долька печени. В общем так печень выглядит под микроскопом. Похожа на Москву-сити, только вместо кремля — центральная вена. А интересовать нас будут «домики», плотно прилежащие друг к другу. Это гепатоциты — ключевые клетки печени.
Славянское слово печень произошло от слова «печь». Действительно, температура органа на градус выше температуры тела. Причина в этом — очень активный обмен веществ в гепатоцитах. Клетки действительно уникальные, в них протекает около 2 тысяч химических реакций.
Печень — это основной орган, который продуцирует мочевую кислоту. 95% выводимого азота — синтез мочевой кислоты как конечный продукт химических реакций в печени . И только 5% — окисление пуриновых оснований, поступающих извне с пищей. Поэтому коррекция питания при гиперурикемии не является ключевым в лечении.

Схема обмена мочевой кислоты

Откуда берутся пурины?
1. Пурины, которые поступают с пищей . Как уже отмечалось — это небольшое количество — около 5%. Те пурины, которые содержаться в пище (больше всего, разумеется в печени и почках, красном мясе).
2. Синтез пуриновых оснований самим организмом . Большая часть синтезируется в гепатоцитах печени. Очень важный пункт, к нему вернемся. А также причем здесь рекомендуемая диабетиками и не требующая для усвоения инсулина фруктоза.
3. Пуриновые основания, которые образуются в организме вследствие распада тканей: при онкопроцессах, псориазе . Почему у спортсменов может повышаться мочевая кислота? Это и есть третий путь. Тяжелые физические нагрузки приводят к усилению процессов распада и синтеза тканей. Если вы накануне занимались тяжелым физическим трудом, а утром вы сдаете анализ, уровень мочевой кислоты может быть выше вашего среднего значения.

Знакомимся: аденин и гуанин. Это и есть пуриновые основания. Совместно с тимином и цитозином формируют спираль ДНК. Студенты медики не любят — зубрежка на курсе биохимии:). Как известно, ДНК состоит из двух цепочек. Напротив аденина всегда становится тимин, напротив гуанина — цитозин. Две цепочки ДНК склеиваются как две половинки застежки-молнии. Количество этих веществ повышается при активном распаде тканей, как бывает, например, при онкопроцессах

Рядом последовательных химических реакций пурины преобразуются в мочевую кислоту.

Метаболизм мочевой кислоты у человека и приматов

Планировал максимально упростить для понимания схему. Пусть учат студенты-медики на 2 курсе:). Но названия ферментов оставил. Самый важный моментфермент ксантиноксидаза . Именно его активность падает при лечении аллопуринолом (точнее эффективность, так как аллопуринол с ним конкурирует за рецептор), чем и снижается синтез мочевой кислоты.
Редко, но всречаются врожденное заболевание,сопровождающееся генетическим нарушением в синтезе ксантиноксидазы, при котором уровень мочевой кислоты снижен. В таком случае накапливаются ксантин и гипоксантин. Ксантинурия. Казалось бы ну и хорошо, меньше мочевой кислоты. Однако выяснилось, что мочевая кислота не только вредна, но и полезна…

Разговор о вреде и пользе мочевой кислоты следует начать очень издалека. Тогда, 17 миллионов лет назад, в эпоху миоцена у наших предков произошла мутация в гене, который продуцирует фермент — уриказу. И нам досталась «урезанная» версия пуринового обмена.

У других млекопитающих уриказа переводит мочевую кислоту в растворимый и легко выводящийся из организма аллантоин. И у этих животных никогда не бывает подагры. Может возникнуть предположение, что в этой мутации нет никакого смысла. Но эволюция этот ген не исключила: мутация оказалась необходимой.

Современные исследования показали, что мочевая кислота является побочным продуктом разложения фруктозы в печени и накопление солей мочевой кислоты способствует эффективному превращению фруктозы в жир. Таким образом, у наших предков в геноме закрепился ген «бережливости». Тогда ген был необходим для создания запасов на голодный период. Было доказано, что окончательная инактивация уриказы совпала с глобальным похолоданием климата на Земле. Нужно было «наесть» как можно больше запасов подкожного жира на холодный период, перевести содержащуюся в плодах фруктозу в жировой запас. Сейчас проводятся ряд экспериментов с введением в клетки печени фермента уриказы. Не исключено, что в дальнейшем на основе фермента уриказы появятся препараты для лечения подагры. Так что склонность к ожирению у нас заложена в генах. На несчастье тем многим мужчинам и женщинам, страдающим полнотой. Но проблема не только в генетике. Изменился характер питания современного человека.

Про вред и пользу мочевой кислоты, а также про питание при гиперурикемии

Известно, что постоянный уровень мочевой кислоты способен значительно повысить риск ряда заболеваний. Однако доказано, что периодическое повышение уровня мочевой кислоты может оказывать положительное действие. Исторически доступ к мясной пище (основному источнику пуринов), был нерегулярным. Основная пища: различные коренья, плоды деревьев. Ну а если принесет первобытный охотник добычу — так это праздник. Поэтому, периодическое от мясных продуктов было обычным образом жизни. Есть добыча — едим до отвала. Нет добычи — едим растительную пищу. Сейчса установлено, что кратковременное, периодическое повышение уровня мочевой кислоты благоприятно вляет на развитие и функцию нервной системы. Может поэтому и начал развиваться мозг?

Как эта мочевая кислота выводится из организма

Пути два: почки и печень
Основной путь — выведение с почками — это 75%
25 процентов выводится печенью с помощью желчи. Поступившая в просвет кишечника мочевая кислота и разрушается (спасибо нашим бактериям в кишечнике).
В почки мочевая кислота попадает в виде натриевой соли. При ацидозе (закислении мочи) в почечных лоханках могут формироваться микролиты. Тот самый «песок» и «камни». Кстати алкоголь очень сильно снижает экскрецию уратов с мочой. Почему и приводит к приступу подагры.

Итак, какой нужно сделать вывод?Методы снижения мочевой кислоты

1. Стараться в неделю 1-2 дня делать чисто вегетарианским
2. Наибольшее количество пуринов содержится в тканях животного происхождения. Причем в животных клетках с активным метаболизмом: печени, почках — больше всего.
3. Нужно есть меньше жирной пищи, так как избыток насыщенных жиров подавляет способность организма перерабатывать мочевую кислоту.
4. Едим поменьше фруктозы. Мочевая кислота — продукт метаболизма фруктозы. Ранее пациентам с сахарным диабетом рекомендовали заменять глюкозу на фруктозу. Действительно, фруктоза для своего усвоения не требует участия инсулина. Но для усвоения фруктоза еще тяжелее. Внимание: в сахаре молекула сахарозы — это дисахарид — глюкоза + фруктоза. Так что сахара едим меньше.
5. Исключить прием алкоголя, особенно пива. Вино в небольших количествах не влияет на уровень мочевой кислоты.
6. Очень интенсивные физические нагрузки повышают уровень мочевой кислоты.
7. Нужно пить много воды. Это позволит эффективно выводить мочевую кислоту.

Если у вас повышена мочевая кислота

Ну во первых, к счастью это не всегда является патологией: кратковременный подъем может быть вариантом нормы
Если все же проблема есть, нужно разобраться, на каком уровне есть нарушение (та самая первая схема): нарушения в синтезе пуринов (тот самый метаболический синдром), алиментарный фактор (много мяса кушаем, пивом запиваем), нарушение функции почек (нарушение экскреции мочевой кислоты)или сопутствующие заболевания, сопровождающиеся разрушением тканей.

Удачи Вам и грамотных докторов.

Если вы нашли опечатку в тексте, пожалуйста, сообщите мне об этом. Выделите фрагмент текста и нажмите Ctrl+Enter .

В растительном и животном мире широко распространены гидроксипроизводные пурина, важнейшими из которых являются мочевая кислота, ксантин и гипоксантин. Эти соединения образуются в орга­низме при метаболизме нуклеиновых кислот.

Мочевая кислота . Это кристаллическое, плохо растворимое в воде веще­ство содержится в небольшом количестве в тканях и моче млекопитающих. У птиц и рептилий мочевая кислота выступает как вещество, выводящее из организма избыток азота (аналогично мочевине у млекопитающих). Гуано (высохшие экскременты морских птиц) содержит до 25% мочевой кислоты и служит источником ее получения.

Для мочевой кислоты характерна лактам-лактимная таутомерия . В кристаллическом состоянии мочевая кислота находится в лактатной (оксо-) форме, а в растворе между лактамной и лактимной формами устанавливается динамическое равновесие, в котором преобладает лактатная форма.

Мочевая кислота является двухосновной кислотой и образует соли - ураты - соответственно с одним или двумя эквивалентами щелочи (дигидро- и гидроураты).

Дигидроураты щелочных металлов и гидроурат аммония нерастворимы в воде . При некоторых заболеваниях, например при подагре и мочекаменной болезни, нера­створимые ураты наряду с мочевой кислотой откладываются в суставах и мочевыводя­щих путях.

Окисление мочевой кислоты, а также ксантина и его производных лежит в основе качественного метода определения этих соединений, называемого мурексидной пробой (качественная реакция) .

При действии таких окислителей, как азотная кислота, пероксид водорода или бромная вода, размыкается имидазольный цикл и первоначально образуются пиримидиновые производныеаллоксан идиалуровая кислота . Эти соединения превраща­ются далее в своеобразный полуацеталь -аллоксантин , при обработке кото­рого аммиаком получаютсятемно-красные кристаллы мурексида - аммоние­вой соли пурпуровой кислоты (в ее енольной форме).

    Конденсированные гетероциклы: пурин – строение, ароматичность; производные пурина – аденин, гуанин, их таутомерия (вопр. 22).

Аденин и гуанин . Эти два аминопроизводныгх пурина, показанные ниже в виде 9Н-таутомеров, являются компонентами нуклеиновых кислот.

Аденин входит также в состав ряда коферментов и природных антибиоти­ков. Оба соединения встречаются и в свободном виде в растительныгх и животныгх тканях. Гуанин, например, содержится в чешуе рыб (из которой его и выделяют) и придает ей характерный блеск.

Аденин и гуанин обладают слабыми кислотными и слабыми основными свойствами. Оба образуют соли с кислотами и основаниями; пикраты удобны для идентификации и гравиметрического анализа.

Структурные аналоги аденина и гуанина, действующие по принципу анти­метаболитов этих нуклеиновых оснований, известны как ве­щества, подавляющие рост опухолевый клеток. Из десятков соединений, оказав­шихся эффективными в эксперименте на животных, некоторые используются и в отечественной клиническом практике, например меркаптопурин и тиогуанин (2-амино-6-меркаптопурин). Из других лекарственных средств на базе пурина следует упомянуть иммунодепрессант азатиоприн и антигерпесный препарат ацикловир (известный и как зовиракс).

    Нуклеозиды: строение, классификация, номенклатура; отношение к гидролизу.

Важнейшими гетероциклическими основаниями служат производные пи­римидина и пурина, которые в химии нуклеиновых кислот принято называть нуклеиновыми основаниями.

Нуклеиновые основания . Для нуклеиновых оснований приняты сокращенные обозначения, со­ставленные из первых трех букв их латинских названий.

К числу важнейших нуклеиновых оснований относятся гидрокси- и ами­нопроизводные пиримидина - урацил, тимин, цитозин и пурина -аденин и гуанин . Нуклеиновые кислоты различаются входящими в их состав гетероциклическими основаниями. Так, урацил входит только в РНК, а тимин - только в ДНК.

Аро­матичность гетероциклов в структуре нуклеиновых оснований лежит в основе их относительно высокой термодинамической стабильности. В замещенномпиримидиновом цикле в лактамных формах нуклеиновых основа­ний шестиэлектронное π-облако образуется за счет 2 р-электронов двойной связиC=Cи 4 электронов двух неподеленных пар атомов азота. В молекуле цитози­на ароматический секстет возникает при участии 4 электронов двух π-связей (C=CиC=N) и неподеленной пары электронов пиррольного азота. Делокализация π-электронного облака по всему гетероциклу осуществляется с участиемsp 2 -гибридизованного атома углерода карбонильной группы (одного - в цитозине, гуанине и двух - в урациле, тимине). В карбонильной группе вследствие сильной поляризацииπ-связиC=Оp-орбиталь атома углерода становится как бы вакантной и, следовательно, спо­собной принять участие в делокализации неподеленной пары электронов соседнего амидного атома азота. Ниже с помощью резонансных структур урацила показана де­локализацияp-электронов (на примере одного лактамного фрагмента):

Строение нуклеозидов . Нуклеиновые основания образуют сD-рибозой или 2-дезокси-D-рибозойN-гликозиды, которые в химии нуклеиновый кислот называютнуклеозидами и конкретно - рибонуклеозидами или дезоксирибонуклеозидами соответственно.

D-Рибоза и 2-дезокси-D-рибоза в составе природныгх нуклеозидов нахо­дятсяв фуранозной форме , т. е. в виде остатковβ-D-рибофуранозы или 2-дезокси-β-D-рибофуранозы. В формулах нуклеозидов атомы углерода в фуранозных циклах нумеруются цифрой со штрихом.N -Гликозидная связь осуществляется между аномерным атомом С-1" рибозы (или дезоксирибозы) и атомомN-1 пиримидинового илиN-9 пуринового основания.

(! ) Природные нуклеозиды всегда являютсяβ-аномерами .

Построение названия нуклеозидов иллюстрируется следующими приме­рами:

Однако наиболее употребительными являются названия, производимые от тривиального названия соответствующего гетероциклического основания с суффиксом -идин у пиримидиновытх (например, уридин) и -озин у пуриновых (гуанозин) нуклеозидов. Сокращенные названия нуклеозидов представляют со­бой однобуквенный код, где используется начальная буква латинского названия нуклеозида (с добавлением латинской буквыdв случае дезоксинуклеозидов):

Аденин + Рибоза → Аденозин (А)

Аденин + Дезоксирибоза → Дезоксиаденозин (dA)

Цитозин + Рибоза → Цитидин (С)

Цитозин + Дезоксирибоза → Дезоксицитидин (dC)

Исключением из этого правила является название «тимидин » (а не «дезокситимидин»), которое используется для дезоксирибозида тимина, входя­щего в состав ДНК. Если же тимин связан с рибозой, то соответствующий нуклеозид называют риботимидином.

Являясь N-гликозидами, нуклеозиды отно­сительно устойчивых к щелочам , нолегко гидролизуются при нагревании в присутствии кислот . Пиримидиновые нуклеозиды более устойчивы к гидро­лизу, чем пуриновые.

Имеющейся «небольшой» раз­ницы в строении или конфигурации одного атома углерода (например, С-2") в углеводном остатке оказывается достаточным, чтобы вещество играло роль ингибитора биосинтеза ДНК. Этот принцип используется при создании но­вых лекарственных средств методом молекулярной модификации природных моделей.

    Нуклеотиды: строение, номенклатура, отношение к гидролизу.

Нуклеотиды образуются в результате частичного гидролиза нуклеиновых кислот, либо путем синтеза. Они содержатся в значительных количествах во всех клетках. Нуклеотиды являютсяфосфатами нуклеозидов .

В зависимости от природы углеводного остатка различают дезоксирибонуклеотиды ирибонуклеотиды . Фосфорная кислота обычно этерифицирует спиртовый гидроксил приС-5" или приС-З" в остатках дезоксирибозы (дезоксирибонуклеотиды) или рибозы (рибонуклеотиды). В молекуле нуклеотида для связывания трех структурных компонентов используютсясложноэфирная связь иN -гликозидная связь .

Принцип строения мононуклеотидов

Нуклеотиды можно рассматривать как фосфаты нуклеозидов (эфиры фосфорной кислоты) и каккислоты (в связи с наличием протонов в остат­ке фосфорной кислоты). За счет фосфатного остатка нуклеотидыпроявляют свойства двухоснов­ной кислоты и в физиологических условиях при рН ~7 находятся в полностью ионизированном состоянии.

Для нуклеотидов используют два вида названий. Один из них включает наименование нуклеозида с указанием положения в нем фосфатно­го остатка, например аденозин-3"-фосфат, уридин-5"-фосфат. Другой вид на­званий строится путем добавления сочетания -иловая кислота к названию ос­татка нуклеинового основания, например 3"-адениловая кислота, 5"-уридиловая кислота.

В химии нуклеотидов также принято использование сокращенных назва­ний . Свободные мононуклеотиды, т. е. не находящиеся в составе полинуклеотидной цепи, называют как монофосфаты с отражением этого признака в сокращенном коде буквой «М». Например, аденозин-5"-фосфат имеет сокра­щенное название АМР (в отечественной литературе - АМФ, аденозинмоно- фосфат) и т. п.

Для записи последовательности нуклеотидных остатков в составе полинуклеотидных цепей применяется другой вид сокращений с использованием однобуквенного кода для соответствующего нуклеозидного фрагмента. При этом 5"-фосфаты записываются с добавлением латинской буквы «р» перед од­нобуквенным символом нуклеозида, 3"-фосфаты - после однобуквенного символа нуклеозида. Например, аденозин-5"-фосфат - рА, аденозин-3"-фосфат - Ар и т. п..

Нуклеотиды способны гидролизоваться в присутствии сильных неорга­нических кислот (НС1, НВr, Н 2 SО 4) инекоторых органических кислот (СС1 3 СООН, НСООН, СН 3 СООН) поN-гликозидной связи, фосфорноэфир­ная связь проявляет при этом относительную устойчивость. В то же время под действием фермента 5"-нуклеотидазы гидролизуется сложноэфирная связь, аN- гликозидная связь сохраняется.

    Нуклеотидные коферменты: АТФ–строение, отношение к гидролизу.

Нуклеотиды имеют большое значение не только как мономерные едини­цы полинуклеотидных цепей различных видов нуклеиновых кислот. В живых организмах нуклеотиды являются участниками важнейших биохимических процессов. Особенно они важны в роли коферментов , т. е. веществ, тесно свя­занных с ферментами и необходимых для проявления ими ферментативной активности. Во всех тканях организма в свободном состоянии содержатся моно-, ди- и трифосфаты нуклеозидов.

Особенно известны аденинсодержащие нуклеотиды :

Аденозин-5"-фосфат (АМР, или в русской литературе АМФ);

Аденозин-5"-дифосфат (ADP, или АДФ);

Аденозин-5"-трифосфат (АТР, или АТФ).

Нуклеотиды, фосфорилированные в разной степени, способны к взаимо­превращениям путем наращивания или отщепления фосфатных групп. Дифосфатная группа содержит одну, а трифосфатная - две ангидридные связи, обладающие большим запасом энергии и поэтому называемые макроэргическими . При расщеплении макроэргической связи Р-О выделяется -32 кДж/моль. С этим связана важнейшая роль АТФ как «поставщика» энергии во всех живых клетках.

Взаимопревращения фосфатов аденозина.

В приведенной выше схеме взаимопревращений формулы АМФ, АДФ и АТФ со­ответствуют неионизированному состоянию молекул этих соединений. С участием АТФ и АДФ в организме осуществляется важнейший биохи­мический процесс - перенос фосфатных групп.

    Нуклеотидные коферменты: НАД + и НАДФ + – строение, алкилпиридиниевый ион и его взаимодействие с гидрид–ионом как химическая основа окислительного действия, НАД + .

Никотинамидадениндинуклеотиды . К этой группе соединений относят­сяникотинамидадениндинуклеотид (NAD, или НАД) и его фосфат (NADP, или НАДФ). Эти соединения выполняют важную ролькоферментов в реакциях биологического окисления органических субстратов путем их дегидрирования (с участием ферментов дегидрогеназ). Поскольку эти коферменты являются участниками окислительно-восстановительных реакций, то они могут существовать как в окисленной (НАД+, НАДФ+), так и в восстановленной (НАДН, НАДФН) формах.


Структурным фрагментом НАД + и НАДФ + являетсяникотинамидный ос­таток в видепиридиниевого иона . В составе НАДН и НАДФН этот фрагмент превращается в остаток замещенного 1,4-дигидропиридина.

В ходе биологического дегидрирования, являющегося особым случаем окисления, субстрат теряет два атома водорода, т. е. два протона и два элект­рона (2Н+, 2е) или протон и гидрид-ион (Н+ и Н). Кофермент НАД+ рассматривается как акцептор гидрид-иона . В результате восстановления за счет присоединения гидрид-иона пиридиниевое кольцо переходит в 1,4-дигидропиридиновый фрагмент. Данный процесс обратим.

В ходе окисления ароматический пиридиниевый цикл переходит в неарома­тический 1,4-дигидропиридиновый цикл. В связи с потерей ароматичности возраста­ет энергия НАДН по сравнению с НАД+. Увеличение энергетического содержания происходит за счет части энергии, выделяющейся в результате превращения спирта в альдегид. Таким образом, НАДН запасает энергию, которая затем расходуется в дру­гих биохимических процессах, требующих энергетических затрат.

    Нуклеиновые кислоты: РНК и ДНК, первичная структура.

Нуклеиновые кислоты занимают исключительное место в процессах жиз­недеятельности живых организмов. Они осуществляют хранение и передачу генетической информации и являются инструментом, с помощью которого происходит управление биосинтезом белков.

Нуклеиновые кислоты представляют собой высокомолекулярные соеди­нения (биополимеры), построенные из мономерных единиц - нуклеотидов, в связи с чем нуклеиновые кислоты называют также полинуклеотидами.

Структура каждого нуклеотида включает остатки углевода, гетероцикли­ческого основания и фосфорной кислоты. Углеводными компонентами нук­леотидов являются пентозы:D-рибоза и 2-дезокси-D-рибоза.

По этому признаку нуклеиновые кислоты делятся на две группы:

рибонуклеиновые кислоты (РНК), содержащие рибозу;

дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу.

Матричные (мРНК);

Рибосомные (рРНК);

Транспортные (тРНК).

Первичная структура нуклеиновых кислот. ДНК и РНК имеют общие черты вструктуре макромолекул :

Каркас их полинуклеотидных цепей состоит из чередующихся пентозных и фосфатных остатков;

Каждая фосфатная группа образует две сложноэфирные связи: с атомом С-З" предыдущего нуклеотидного звена и с атомом С-5" - последующего нуклео­тидного звена;

Нуклеиновые основания образуют с пентозными остатками N-гликозидную связь.

Приведено строение произвольного участка цепи ДНК, вы­бранного в качестве модели с включением в нее четырех основных нуклеино­вых оснований - гуанина (G), цитозина (С), аденина (А), тимина (Т). Принцип построения полинуклеотидной цепи РНК такой же, как и у ДНК, но с двумя отличиями: пентозным остатком в РНК служитD-рибофураноза, а в наборе нуклеиновых оснований используется не тимин (как в ДНК), а урацил.

(!) Один конец полинуклеотидной цепи, на котором находится нуклеотид со свободной 5"-ОН-группой, называется5"-концом . Другой конец цепи, на котором находится нуклеотид со свободной З"-ОН-группой, называетсяЗ"-концом .

Нуклеотидные звенья записываются слева направо, начиная с 5"-концевого нуклеотида. Запись строения цепи РНК осуществляется по таким же прави­лам, при этом буква «d» опускается.

С целью установления нуклеотидного состава нуклеиновых кислот прово­дят их гидролиз с последующей идентификацией полученных продуктов. ДНК и РНК ведут себя по-разному в условиях щелочного и кислотного гид­ролиза. ДНК устойчивы к гидролизу в щелочной среде , в то время какРНК очень быстро гидролизуются до нуклеотидов, которые, в свою очередь, спо­собны отщеплять остаток фосфорной кислоты с образованием нуклеозидов.N -Гликозидные связи устойчивы в щелочной и нейтральной средах . Поэтому для их расщепленияиспользуется кислотный гидролиз . Оптимальные результаты дает ферментативный гидролиз с исполь­зованием нуклеаз, в том числе и фосфодиэстеразы змеиного яда, которые рас­щепляют сложноэфирные связи.

Наряду с нуклеотидным составом важнейшей характеристикой нуклеино­вых кислот являетсянуклеотидная последовательность , т. е. порядок чередова­ния нуклеотидных звеньев. Обе эти характеристики входят в понятие первич­ная структура нуклеиновых кислот.

Первичная структура нуклеиновых кислот определяется последовательно­стью нуклеотидных звеньев, связанных фосфодиэфирными связями в не­прерывную цепь полинуклеотида.

Общий подход к установлению последовательности нуклеотидных звень­ев заключается в использовании блочного метода. Сначала полинуклеотидную цепь направленно расщепляют с помощью ферментов и химических ре­агентов на более мелкие фрагменты (олигонуклеотиды), которые расшифро­вывают специфическими методами и по полученным данным воспроизводят последовательность строения всей полинуклеотидной цепи.

Знание первичной структуры нуклеиновых кислот необходимо для выяв­ления связи между их строением и биологической функцией, а также для по­нимания механизма их биологического действия.

Комплементарность оснований лежит в основе закономерностей, кото­рым подчиняется нуклеотидный состав ДНК. Эти закономерности сформу­лированыЭ. Чаргаффом :

Количество пуриновых оснований равно количеству пиримидиновых оснований;

Количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина;

Количество оснований, содержащих аминогруппу в положениях 4 пири­мидинового и 6 пуринового ядер, равно количеству оснований, содержащих в этих же положениях оксогруппу. Это означает, что сумма аденина и цитозина равна сумме гуанина и тимина.

Для РНК эти правила либо не выполняются, либо выполняются с некото­рым приближением, поскольку в РНК содержится много минорных оснований.

Комплементарность цепей составляет химическую основу важнейшей функции ДНК - хранения и передачи наследственных признаков. Сохран­ность нуклеотидной последовательности является залогом безошибочной пе­редачи генетической информации. Изменение последовательности основа­ний в любой цепи ДНК приводит к устойчивым наследственным изменени­ям, а следовательно, и к изменениям в строении кодируемого белка. Такие изменения называют мутациями . Мутации могут происходить в результате за­мены какой-либо комплементарной пары оснований на другую. Причиной такой замены может служить сдвиг таутомерного равновесия.

Например, в случае гуанина сдвиг равновесия в сторону лактимной формы обусловлива­ет возможность образования водородных связей с необычным для гуанина ос­нованием - тимином и возникновение новой пары гуанин-тимин вместо традиционной пары гуанин-цитозин.

Замена «нормальных» пар оснований передается затем при «переписыва­нии» (транскрипции) генетического кода с ДНК на РНК и приводит в итоге к изменению аминокислотной последовательности в синтезируемом белке.

    Алкалоиды: химическая классификация; основные свойства, образование солей. Представители: хинин, никотин, атропин.

Алкалоиды представляют собой большую группу природных азотсодержа­щих соединений преимущественно растительного происхождения. Природные алкалоиды служат моделями для создания новых лекарственных препаратов, часто более эффективных и в то же время более простых по структуре.

В настоящее время в зависимости от происхождения атома азота в структуре молекулы, среди алкалоидов выделяют:

    Истинные алкалоиды – соединения, которые образуются из аминокислот и содержат атом азота в составе гетероцикла (гиосциамин, кофеин, платифиллин).

    Протоалкалоиды соединения, которые образуются из аминокислот и содержат алифатический атом азота в боковой цепи (эфедрин, капсаицин).

    Псевдоалкалоиды – азотсодержащие соединения терпеновой и стероидной природы (соласодин).

В классификации алкалоидов существует два подхода.Химическая клас­сификация основана на строении углеродно-азотного скелета:

    Производные пиридина и пиперидина (анабазин, никотин).

    С конденсированными пирролидиновыми и пиперидиновыми кольцами (производные тропана) - атропин, кокаин, гиосциамин, скополамин.

    Производные хинолина (хинин).

    Производные изохинолина (морфин, кодеин, папаверин).

    Производные индола (стрихнин, бруцин, резерпин).

    Производные пурина (кофеин, теобромин, теофилин).

    Производные имидазола (пилокарпин)

    Стероидные алкалоиды (соласонин).

    Ациклические алкалоиды и алкалоиды с экзоциклическим атомом азота (эфедрин, сферофизин, колхамин).

В основу другого вида классификации алкалоидов положен ботанический признак, согласно которому алкалоиды объединяют по растительным источ­никам.

Большинство алкалоидов обладает основными свойствами , с чем связано их название. В растениях алкалоиды содержатся в виде солей с органическими кис­лотами (лимонной, яблочной, винной, щавелевой).

Выделение из растительного сырья:

1-ый способ (экстракция в виде солей):

2-ой способ (экстракция в виде оснований):

Основные (щелочные) свойства алкалоидов выражены в различной степени. В природе чаще встречаются алкалоиды, которые относятся к третичным, реже - к вторичным либо к четвертичным аммонийным основаниям.

Благодаря основному характеру алкалоиды образуют соли с кислотами разной степени прочности. Соли алкалоидов легко разлагаются под действием едких щелочей и аммиака . При этом выделяются свободные основания.

Благодаря основному характеру, алкалоиды при взаимодействии с кислотами образуют соли . Это свойство используется при выделении и очистке алкалоидов, их количественном определении и получении препаратов.

Алкалоиды-соли хорошорастворимы в воде и этаноле (особенно в разбавленном) при нагревании,плохо или совсем не растворимы в органических растворителях (хлороформ, этиловый эфир и др.). В качествеисключения можно назвать скополамина гидробромид, гидрохлориды кокаина и некоторых опийных алкалоидов.

Алкалоиды-основания обычноне растворяются в воде , но легко растворяются в органических растворителях.Исключение составляют никотин, эфедрин, анабазин, кофеин, которые хорошо растворяются как в воде, так и в органических растворителях.

Представители.

Хинин - алкалоид, выделенный из коры хинного дерева (Cinchona oficinalis ) - представляет собой бесцветные кристаллы очень горького вкуса. Хинин и его производные обладают жаропонижающим и антималярийным действием

Никотин - основной алкалоид табака и махорки. Никотин весьма ядовит, смертельная доза для человека составляет 40 мг/кг, причем при­родный левовращающий никотин в 2-3 раза токсичнее синтетического пра­вовращающего.

Атропин - рацемическая форма гиосциамина, обладает холиноблокирующим действием (спазмолитическим и мидриатическим).

    Алкалоиды: метилированные ксантины (кофеин, теофиллин, теобромин); кислотно-основные свойства; их качественные реакции.

Пуриновые алкалоиды следует рассматривать как N -метилированные ксантины – в основе ядро ксантина (2,6-дигидроксопурин). Наиболее известными представителями этой группы являютсякофеин (1,3,7-триметилксантин),теобромин (3,7-диметилксантин) итеофиллин (1,3-диметилксантин), которые содержатся в зернах кофе и чае, шелухе какао-бо­бов, в орехах кола. Кофе­ин, теобромин и теофиллин широко применяются в медицине. Кофеин ис­пользуется преимущественно как психостимулятор, теобромин и теофиллин - как сердечно-сосудистые средства.

1. Является мощным стимулятором центральной нервной системы, ингибируя фосфодиэстеразу, которая служит посредником действия гормонов адреналина и норадреналина. Мочевая кислота пролонгирует (продлевает) действие этих гормонов на ЦНС.

2. Обладает антиоксидантными свойствами – способна взаимодействовать со свободными радикалами.

Уровень мочевой кислоты в организме контролируется на генетическом уровне. Для людей с высоким уровнем мочевой кислоты характерен повышенный жизненный тонус.

Однако повышенное содержание мочевой кислоты в крови (гиперурикемия ) небезопасно. Сама мочевая кислота и, особенно, ее соли ураты (натриевые соли мочевой кислоты) плохо растворимы в воде. Даже при незначительном повышении концентрации они начинают начинают выпадать в осадок и кристаллизоваться, образуя камни. Кристаллы воспринимаются организмом как чужеродный объект. В суставах они фагоцитируются макрофагами, сами клетки при этом разрушаются, из них освобождаются гидролитические ферменты. Это приводит к воспалительной реакции, сопровождающейся сильнейшими болями в суставах. Такое заболевание называется подагра . Другое заболевание, при котором кристаллы уратов откладываются в почечной лоханке или в мочевом пузыре, известно как мочекаменная болезнь .

Для лечения подагры и мочекаменной болезни применяются:

    ингибиторы фермента ксантиноксидазы. Например, аллопуринол – вещество пуриновой природы, является конкурентным ингибитором фермента. Действие этого препарата приводит к повышению концентрации гипоксантина. Гипоксантин и его соли лучше растворимы в воде, и легче выводятся из организма.

    диетическое питание, исключающее продукты, богатые нуклеиновыми кислотами, пуринами и их аналогами: икра рыб, печень, мясо, кофе и чай.

    соли лития, поскольку они лучше растворимы в воде, чем ураты натрия.

Синтез нуклеиновых кислот синтез мононуклеотидов

Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO 2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает.

РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ

    Аспарагин . Является донором амидной группы.

    Аспарагиновая кислота .

а) Является донором аминогруппы

    Глицин

а) Является донором активного С 1 .

б) Участвует в синтезе всей молекулой.

    Серин . Является донором активного С 1 .

ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ

В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С 1 -группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина В С – фолиевой кислоты . Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ . Н 2 -зависимой редуктазы , и превращается в тетрагидрофолиевую кислоту (ТГФК).

Активный С­ 1 извлекается из глицина или серина.

В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С 1 . Схематически процесс можно представить так:

НАДН 2 , который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений:

    Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов.

    Метиленовая группировка может видоизменяться до:

Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов.

Поэтому любая из группировок, связанная с ТГФК, называется активным С 1 .

Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции:

Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра.

После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.

ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ:

Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид.

При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.

СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)

Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин.

Пуриновое кольцо строится из СО 2 , аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.

Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.

Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.

Серин: тоже является донором одноуглеродного радикала.

ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин

Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.

На второй стадии фосфорибозиламин взаимодействует с глицином.

Третья стадия - включение углеродного атома, донором которого является глицин или серин.

Затем достраивается шестичленный фрагмент пуринового кольца:

4-ая стадия - карбоксилирование с помощью активной формы СО 2 при участии витамина Н - биотина.

5-ая стадия - аминирование с участием аминогруппы из аспартата.

6-ая стадия - аминирование за счет аминогруппы глутамина.

7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ.

Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.

В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.

Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Республики Беларусь

«Витебский государственный ордена Дружбы народов медицинский университет»

Кафедра биологической химии

Реферат

на тему: «Мочевая кислота, метаболизм мочевой кислоты и нарушение обмена»

Подготовил:

студентка 46 группы, 2 курса,

Лечебного факультета

Джумаев Довран

Витебск 2014

1. Мочевая кислота

2. Свойства мочевой кислоты

3. Метаболизм мочевой кислоты

4. Нарушение обмена мочевой кислоты

4.1 Подагра

4.2 Гипоурекимия

4.3 Гиперурекимия

Заключение

Введение

Одними из веществ, без которых ни один человеческий организм нормально не сможет функционировать, являются пуриновые основания. Под пуриновыми основаниями подразумевают сложные органические соединения, являющиеся составными компонентами не только дезоксирибонуклеиновой, но еще и рибонуклеиновой кислоты. А вот именно эти кислоты в свою очередь являются составляющими компонентами РНК и ДНК. На данные кислоты возложены многочисленные функции. К числу самых важных из них можно причислить как передачу генетического кода, так и синтез белка.

Нарушения обмена мочевой кислоты может привести к развитию подагры, проявляющейся рецидивирующими артритами, повышению артериального давления, образованием камней в почках, развитию интерстициального нефрита и нарушению функции почек.

1. Мочевая кислота

Мочевая кислота -- бесцветные кристаллы, плохо растворимы в воде, этаноле, диэтиловом эфире, растворимы в растворах щелочей, горячей серной кислоте и глицерине.

Мочевая кислота была открыта Карлом Шееле (1776) в составе мочевых камней и названа им каменной кислотой -- acide lithique, затем она была найдена им в моче. Название мочевой кислоты дано Фуркруа, её элементарный состав установлен Либихом.

Пуриновым основаниям свойственно регулярно не только синтезироваться, но еще и распадаться. В общем, оба данных процесса являются нормальными. Метаболизм пуринов происходит в печени. В результате метаболизма организм получает мочевую кислоту. Такое название данной кислоте было дано только потому, что впервые ее удалось выявить именно в моче. Вывод мочевой кислоты осуществляется почками. Стоит отметить, что данной кислоте свойственно проникать и задерживаться не только в печени, но и в сердце, суставах, головном мозге, а также многих других органах. Если говорить о плазме крови, то в ней данная кислота имеется в форме натриевых уратов, то есть солей натрия. Немаловажно отметить, что оба данных компонента тесно взаимосвязаны между собой. Как только в крови увеличивается уровень натрия, тут же можно наблюдать скачок и мочевой кислоты.

2. Свойства мочевой кислоты

Является двухосновной кислотой (pK1 = 5.75, pK2 = 10.3), образует кислые и средние соли -- ураты.

В водных растворах мочевая кислота существует в двух формах: лактамной (7,9-дигидро-1H-пурин-2,6,8(3H)-трион) и лактимной (2,6,8-тригидроксипурин) с преобладанием лактамной:

Легко алкилируется сначала по положению N-9, затем по N-3 и N-1, под действием POCl3 образует 2,6,8-трихлорпурин.

Азотной кислотой мочевая кислота окисляется до аллоксана, под действием перманганата калия в нейтральной и щелочной среде либо перекиси водорода из мочевой кислоты образуются сначала аллантоин, затем гидантоин и парабановая кислота.

3. Метаболизм мочевой кислоты

Пуриновые нуклеотиды являются основными компонентами нуклеиновых кислот; они вовлечены в тонкие процессы превращения энергии и реакции фосфорилирования и действуют как внутриклеточные информационные посредники. Поскольку пурины метаболизируются с образованием мочевой кислоты, содержание урата в организме (а следовательно, и концентрация в плазме) зависит от соотношения скорости образования урата из вышеописанных источников и скорости его экскреции. Мочевая кислота выводится через почки и через желудочно-кишечный тракт, почечная экскреция составляет примерно две трети от общей экскреции. Мочевая кислота, которая выводится в кишечник, под воздействием бактерий метаболизируется с образованием диоксида углерода и аммиака (уриколиз). Процессы, происходящие в почках с уратом, сложны. Он фильтруется в клубочке и практически полностью абсорбируется в проксимальных извитых канальцах; дистально происходит и секреция, и реабсорбция. В норме клиренс урата составляет примерно 10 % от объема его фильтрата. У здоровых людей экскреция урата увеличивается, если увеличивается объем его фильтрации.

При хронической почечной недостаточности концентрация урата в плазме повышается только тогда, когда скорость клубочковой фильтрации падает ниже 20 мл/мин. Пурины пищи составляют примерно 30 % выводимого урата. Назначение не содержащей пуринов диеты уменьшает концентрацию урата в плазме только на 10-20 %. Синтез de novo ведет к образованию инозинмонофосфата (ИМФ), который может превращаться в аденозин-монофосфат (АМФ) и гуанозин-монофосфат (ГМФ). В результате распада нуклеотидов образуются соответствующие нуклеозиды (инозин, аденозин и гуанозин), которые затем превращаются в пурины. Из ИМФ образуется пурин гипоксантин, который при участии фермента ксантиноксидазы превращается сначала в ксантин, а затем в мочевую кислоту. Гуанин может непосредственно метаболизироваться в ксантин (а затем и в мочевую кислоту), а аденин не может.

Однако АМФ может превращаться в ИМФ при участии фермента АМФ-дезаминазы, а затем, на уровне нуклеозидов, аденозин может превращаться в инозин. Таким образом, избыток ГМФ и АМФ может превращаться в мочевую кислоту и выводиться из организма. Однако экскреция мочевой кислоты влечет за собой метаболические потери, поскольку синтез пуринов требует значительных затрат энергии. Существуют пути метаболизма, в которых пурины могут сохраняться и подвергаться обратному превращению в соответствующие нуклеотиды. В случае гуанина и гипоксантина этот процесс происходит с участием фермента гипоксантин-гуанинфосфорибозил-трансферазы (ГГФРТ), в превращении аденина участвует фермент аденинфосфорибозил-трансфераза (АФРТ).

4. Нарушение обмена мочевой кислоты

Мочевая кислота, являясь конечным продуктом метаболизма пуриновых оснований, образуется в печени и выводится в основном с мочой. Ее образование способствует выведению пуринов из организма. Мочевая кислота содержится в плазме крови в виде натриевых солей, концентрация которых при некоторых патологических состояниях может существенно повышаться. В этой связи есть шанс кристаллизации урата натрия в различных органах и тканях в результате чрезмерной концентрации мочевой кислоты в плазме крови (гиперурикемии). В ряде случаев может наблюдаться снижение уровня мочевой кислоты -- гипоурикемия.-

Повышение концентрации мочевой кислоты в крови может быть связано и с избыточным употреблением в пищу продуктов, содержащих пурины: печень, почки, красное мясо, мозги, язык, бобовые. У здорового человека уровень мочевой кислоты может несколько повышаться и понижаться, в зависимости от соблюдения той или иной диеты. Также известно, что уровень мочевой кислоты у мужчин выше, чем у женщин репродуктивного возраста, при этом к 60 годам этот показатель уравнивается.

Концентрация мочевой кислоты в сыворотке крови определяется путем проведения биохимического анализа крови. Подготовка к исследованию на содержание мочевой кислоты в крови подразумевает:

· отсутствие приемов пищи за 6-8 часов до сдачи крови;

· исключение спиртных напитков и продуктов, богатых пуриновыми основаниями, за несколько дней до проведения анализа.

Результаты, как правило, можно получить уже на следующий день после проведения исследования.

Максимальным показателем нормального уровня мочевой кислоты у женщин считается 360 мкм/л, у мужчин -- 400 мкм/л. Увеличение этих показателей требует выяснения причин гиперурикемии. Такое состояние может быть вызвано чрезмерным образованием мочевой кислоты и нарушением функции почек. Гиперурикемия -- основной симптом такого заболевания, как подагра. Помимо этого, превышение максимального показателя уровня мочевой кислоты в крови характерно для таких патологических состояний, как:

ь анемия при недостатке витамина В12,

ь заболевания печени и желчевыводящих путей,

ь лейкоз, лимфома,

ь пневмония, туберкулез,

ь псориаз, хроническая экзема,

ь сахарный диабет,

ь заболевания почек,

ь острое алкогольное отравление.

Употребляя в пищу продукты с большим содержанием пуринов, стоит соблюдать следующие правила:

Ш их количество в рационе должно быть умеренным;

Ш не следует сочетать в одном приеме пищи разные продукты с большим содержанием пуринов;

Ш необходимо сочетать такие продукты со свежими сырыми овощами. Объем овощей должен значительно превышать объем продукта с богатым содержанием пуриновых оснований.

Такое питание будет способствовать нормальному кислотно-щелочному балансу в организме.

Увеличение показателей мочевой кислоты свойственно и для абсолютно здоровых людей, если их ежедневный рацион включает большое количество пищи, богатой пуринами. В этой связи очень важно соблюдать не только вышеизложенные правила, но и существенно ограничить некоторые продукты, что позволит избежать развития хронической гиперурикемии и ряда заболеваний, связанных с повышенным содержанием мочевой кислоты в крови, моче и кристаллизацией уратов натрия в органах и тканях.

В большинстве случаев соблюдение правил питания позволяет достаточно быстро нормализовать показатели уровня мочевой кислоты. Для этого необходимо резко ограничить или полностью исключить употребление копченой рыбы, печени, жирных сортов мяса, колбасы, рыбных и мясных консервов, мясных бульонов, почек, икры рыб, спиртных напитков, кофе, шоколада, горчицы, изделий из слоеного теста, грибов, шпината, цветной капусты и щавеля. При гиперурикемии можно употреблять молочные и кисломолочные продукты, нежирные сорта мяса и рыбы (в отварном виде, не чаще 3 раз в неделю), яйца, овощи и овощные супы, фрукты, мармелад, соки, компоты, а также отвары шиповника и пшеничных отрубей. Также очень важно соблюдать правильный водный режим (не менее 2 л чистой питьевой воды в день), употребление воды с небольшим содержанием сока лимона или брусники благоприятно влияет на выведение мочевой кислоты из организма.

Нормализации уровня мочевой кислоты также способствует прием диуретических медикаментозных средств, в том числе растительных препаратов. Одним из таких препаратов является фитокомплекс «Урисан». Его компоненты оказывают антигиперурикемическое, противовоспалительное и противоазотемическое действие, препятствуя отложению солей мочевой кислоты в суставах и образованию уратных камней в почках.

4.1 Подагра

В основе подагры лежит нарушение обмена нуклеопротеидов (белков клеточного ядра) с задержкой в организме мочевой кислоты и отложением ее солей в тканях, что ведет к развитию воспалительных и деструктивно-склеротических изменений. Поражаются преимущественно суставы.

Главным источником мочевой кислоты в организме являются пурины, содержащиеся в пище. Вместе с тем мочевая кислота может образовываться при тканевом распаде и синтезироваться в организме.

Важное значение в развитии заболевания имеет систематическое употребление большого количества продуктов, богатых пуриновыми основаниями, особенно у лиц с наследственной предрасположенностью к нарушениям пуринового обмена. Некоторые исследователи (В. Г. Баранов и др.) указывают на роль фактора аллергии в развитии приступов подагры, поскольку эти больные весьма склонны к другим аллергическим состояниям (крапивница, бронхиальная астма, экзема).Развитию подагры способствуют лечение препаратами печени, цианокобаламином, глюкокортикоидами и лучевая терапия.Подагра нередко сочетается с мочекаменной болезнью (в 15--30 % случаев).

Лечебное питание имеет целью ограничить употребление продуктов, богатых пуриновыми основаниями, усилить выведение мочевой кислоты почками за счет увеличения диуреза, способствовать ощелачиванию мочи, снижению возбудимости вегетативной нервной системы и оказывать десенсибилизирующее влияние. Показано умеренное ограничение энергетической ценности рациона в основном за счет продуктов, богатых пуриновыми основаниями.

При тучности снижение энергетической ценности должно производиться с учетом массы больного.Выраженное специфически-динамическое действие белков способствует образованию эндогенной мочевой кислоты. Поэтому их количество в диете следует несколько ограничивать (до 0,8--1 г на 1 кг массы).Аналогичной тактики следует придерживаться в отношении включения в рацион жиров и углеводов. Необходимость ограничения жира диктуется его отрицательным влиянием на выведение уратов из организма. Поэтому рекомендуется включать жиры в диету из расчета 1--1,1 г, а в далеко зашедших случаях 0,7--0,8 г на 1 кг массы.

Ограничение углеводов в рационе оказывает десенсибилизирующее влияние на организм. Особенно важно снижать употребление легкоусвояемых углеводов при сопутствующем ожирении. Целесообразно обогащать диету витаминами (аскорбиновой кислотой, ниацином, рибофлавином).

При отсутствии противопоказаний со стороны сердечнососудистой системы и почек с целью вымывания мочекислых соединений из организма показано употребление повышенного количества жидкости (не менее 2--2,5 л) в виде овощных, фруктовых и ягодных соков, воды с лимоном, отвара шиповника, сушенных ягод, мятного и липового чая, молока. Рекомендуют щелочные минеральные воды, что способствует ощелачиванию мочи. Последнее повышает растворимость мочевой кислоты и тем самым предупреждает возникновение или прогрессирование подагрического нефролитиаза.

Ощелачиванию мочи способствует также употребление продуктов, богатых щелочными валентностями: овощей, фруктов, ягод. Их положительное влияние обусловлено также наличием калия, который оказывает мочегонное действие и тем самым благоприятствует выведению мочекислых соединений из организма.

Целесообразно некоторое ограничение соли в рационе, так как она задерживает жидкость в тканях и тем самым препятствует вымыванию через почки мочекислых соединений. Употребление избыточного количества соли способствует выпадению уратов в тканях.

К числу продуктов, богатых пуринами и подлежащих ограничению, относятся бобовые (горох, бобы, чечевица, фасоль), рыба (шпроты, сардины, килька, треска, судак, щука), субпродукты (почки, печень, мозги, легкие), грибы (белые, шампиньоны), мясные и рыбные бульоны, студень, некоторые овощи (щавель, шпинат, редис, спаржа, цветная капуста), мясо (свинина, телятина, говядина, баранина, гусь, курица), колбасные изделия (особенно ливерная колбаса), дрожжи, овсяная крупа, полированный рис, соусы (мясные, рыбные, грибные).

Мясо лучше употреблять в вареном виде, так как около 50 % пуринов переходит в навар.

Показано ограничение продуктов, возбуждающих нервную систему (кофе, какао, крепкий чай, острые закуски, пряности и др.). Употребление спиртных напитков может провоцировать подагрические приступы, так как алкоголь ухудшает выведение почками мочевой кислоты.

В связи с частой оксалемией не следует включать в рацион больных подагрой продукты, богатые щавелевой кислотой (шпинат, щавель, инжир, ревень).

Рекомендуется употребление бедной пуринами пищи: молока и молочных продуктов, яиц, овощей (капуста, картофель, огурцы, морковь, лук, томаты, арбуз), фруктов (земляника, яблоки, абрикосы, виноград, сливы, груши, персики, вишни, апельсины), лесных и грецких орехов, мучных и крупяных изделий, сахара, меда, варенья, сала, кровяной колбасы, пшеничного хлеба, сливочного масла.Разрешаются 2--3 раза в неделю мясо и рыба в отварном виде. В числе дозволенных специй: уксус, лавровый лист.Этим требованиям отвечает диета № 6 по М. И. Певзнеру, которая должна браться за основу при назначении лечебного питания при подагре.

Примерное однодневное меню для больных подагрой(диета № 6).

Натощак: подогретая щелочная минеральная вода (100 мл) или отвар шиповника (100 мл). 1-й завтрак: жидкая овсяная каша на молоке (150 г), молоко (200 мл). 2-й завтрак: виноградный сок (200 мл). Обед: овощной протертый суп (150 г), кисель молочный (180 г). Полдник: морковный сок (200 мл). Ужин: жидкая рисовая каша на молоке (150 г), компот из свежих фруктов (180 г). 21 ч: кефир (200 г). На ночь: чай с молоком без сахара (180 мл).

Положительное влияние оказывает назначение в течение одного дня в неделю разгрузочных диетических режимов, состоящих из продуктов, бедных пуриновыми основаниями (яблочного, огуречного, картофельного, арбузного, молочного и др.).

Острый приступ подагры требует назначения 1--2 голодных дней, когда разрешается употребление достаточного количества жидкости (чая с сахаром, отвара шиповника, воды с лимоном, овощных и фруктовых соков, щелочных минеральных вод и др.). В дальнейшем показан переход на молочно-овощную диету.

4.2 Гипоурикемия

Гипоурикемия и возросшая экскреция гипоксантина и ксантина может быть следствием недостаточности ксантиноксидазы, вызванной нарушениями в структуре гена этого фермента, либо результатом повреждения печени.

4.3 Гиперурикемия

Гиперурикемия -- повышенное содержание мочевой кислоты в крови. Максимальная величина для нормального уровня составляет 360 микромолей/литр (6 мг/дл) для женщин и 400 микромолей/литр (6,8 мг/дл) для мужчин. Гиперурикемия вызывается ускоренным образованием мочевой кислоты из-за участия пурина в обмене веществ, или из-за ослабленной работы почек, или из-за повышенного содержания фруктозы в пище.

Потребление богатой пурином пищи -- это одна из основных причин гиперурицемии. Другая вызываемая едой причина -- это потребление высококалорийной и жирной пищи и голодание. Результатом голодания бывает то, что для получения энергии начинает тратиться мышечная масса тела и высвобождаемые в процессе этого пурины попадают в кровообращение.

Человеку необходима урата оксидаза, энзим, который разрушает мочевую кислоту. Повышение уровня мочевой кислоты увеличивает предрасположенность к подагре и (при очень высоком уровне) почечной недостаточности. Независимо от обычных отклонений (с генетической составляющей), синдром распада новообразования вырабатывает критическое содержание мочевой кислоты, что почти всегда приводит к почечной недостаточности. Синдром Лёша-Нихена также взаимосвязан с критически высокими уровнями мочевой кислоты. Метаболический синдром часто представлен гиперурицемией.

1. Препарат «Aquaretics».

2. Препарат «Аллопуринол» (200-300 мг перорально один раз в день).

3. Понижение кислотности мочи потреблением пищевой соды.

4. Диета с низким содержанием пурина (смотрите подагра).

5. Препарат «Фебуксостат».

За ключение

мочевая кислота метаболизм обмен

Во избежание проблем, связанных с заболеваниями суставов, почек и других патологических процессов, очень важно контролировать уровень мочевой кислоты в сыворотке крови, особенно лицам старше 45 лет. Своевременное выявление гипер- или гипоурикемии позволяет вовремя принять меры, направленные на нормализацию показателей уровня мочевой кислоты в организме и избежать развития патологических процессов.

Список литературы

1. Дроздов В.Н. «Обмен мочевой кислоты у больных гипертонической болезнью с метаболическим синдромом « Автореферат диссертации на соискание ученой степени кандидата медицинских наук. Москва-1999.

2. http://www.tiensmed.ru/

3. http://www.krugosvet.ru/

4. http://ru.wikipedia.org/

Размещено на Allbest.ru

...

Подобные документы

    Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа , добавлен 12.07.2010

    Характеристика оксикоричневых кислот и этиленовых связей. Основные виды ароматических органических кислот: бензойная, салициловая, галловая. Общее описание Родиолы розовой. Применение препарата "Экстракт родиолы жидкий". Анализ цикориевой кислоты.

    курсовая работа , добавлен 06.04.2012

    Основная роль дезоксирибонуклеиновой кислоты. Ученые, создавшие в 1953 г. модель структуры молекулы. Система выделения и очистки нуклеинов. Схематичное изображение отрезка дезоксирибонуклеиновой кислоты в окружении различных белковых структур человека.

    презентация , добавлен 02.02.2014

    Подготовка питательной среды, получение посевного материала. Технология изготовления уксуса, его вредители. Очистка и подготовка полученного продукта к применению. Технологическая схема микробиологического синтеза уксусной кислоты. Расчет модели на ЭВМ.

    дипломная работа , добавлен 13.12.2010

    История открытия дезоксирибонуклеиновой кислоты - биологического полимера, состоящего из двух спирально закрученных цепочек. Первичная структура и конформации компонентов нуклеиновых кислот. Макромолекулярная структура ДНК, полиморфизм двойной спирали.

    презентация , добавлен 07.11.2013

    Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.

    презентация , добавлен 21.10.2014

    История открытия вирусов, их детальное исследование после изобретения микроскопа. Характеристика вирусов: свойства, формы существования, строение, химический состав и процесс размножения. Гипотеза о происхождении вирусов из "беглой" нуклеиновой кислоты.

    презентация , добавлен 18.01.2014

    Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация , добавлен 12.01.2014

    Понятие и особенности строения нуклеиновых кислот, их составные элементы и их внутреннее взаимодействие. Значение данных соединений в организме, история их открытия и основные этапы исследований. Длина молекул ДНК. Сущность принципа комплементарности.

    презентация , добавлен 27.12.2010

    История открытия нуклеиновых кислот. Основные виды РНК. Методы цитологического распознавания ДНК и РНК. Закономерности количественного содержания азотистых оснований в молекуле ДНК, правила Чаргаффа. Строение молекул РНК. Структура азотистых оснований.