Современная научная космология возраст вселенной. Конечная интенсивность светового потока, приходящего из космоса. Принятая в настоящее время периодизация

Космология изучает происхождение и процесс развития и эволюции Вселенной. Изучите основы, проблемы и принципы современной космологии и астрофизики Вселенной.

То есть, эта наука (астрофизика, астрономия, геология, физика и климатология) прослеживает развитие пространства от Большого Взрыва и даже пытается смоделировать будущее.

Космологи рассматривают довольно экзотические и непривычные концепции, а объекты космологии включают темную материю и темную энергию, теорию струн, количество вселенных. Если другие аспекты астрономии изучают определенные явления, то современная космология Вселенной старается охватить масштабную картинку.

История космологии и астрономии

Основы и теории космологии не появились на пустом месте. Разумеется, с развитием человечества наше понимание пространства также эволюционировало. Сначала Земля воспринималась как центр и начало всего, а прочие объекты либо просто закреплены на своих неподвижных позициях, либо же вращаются вокруг. Все изменилось с приходом Николая Коперника в 16 веке, выдвинувшем гелиоцентрическую систему, объясняющую, что мы лишь часть масштабной Вселенной и расположены далеко не в центре. Но это не единственный ученый, которого выдвинула космология.

В 17 веке Исаак Ньютон интересовался силами, возникающими между планетами, и пришел к гравитации. В 20-м веке всех шокировал Альберт Эйнштейн своей общей теорией относительности. В 1900-х гг. люди задумались о размере Вселенной. То есть, все ограничивается Млечным Путем или есть что-то дальше?

Новый шаг сделал Эдвин Хаббл. Он исследовал далекое туманное пятно и понял, что оно расположено за пределами нашей галактики! Также он выяснил, что эти объекты выступают галактиками, которые отдаляются от нас, а значит, пространство не статично, оно расширяется (расширяющаяся Вселенная).

Современный популярный физик-теоретик Стивен Хокинг полагает, что у Вселенной есть конец, а значит и размер. Однако, нам никогда не увидеть ее границу. Это похоже на ситуацию с нашей планетой: можно обойти ее по кругу, но вы вернетесь на старт. Также Хокинг считает, что расширение продолжится вечно, пока не закончится.

Что существовало до Большого Взрыва?

Теория космологии утверждает, что пространство началось с Большого Взрыва. Есть мнение, что существуют и другие вселенные, однако нет практического способа их «увидеть», поэтому пока можно лишь сказать, что до Большого Взрыва не было ничего.

Где произошло это событие?

Нет определенной точки, так как до того ничего не существовало. Большой Взрыв просто произошел.

Если другие галактики отходят от нас, то не стоим ли мы в центре Вселенной?

Нет. Если вы окажитесь в другой галактике, то заметите, что остальные отдаляются уже от этой. Наша Вселенная как воздушный шар. Надуйте и взорвите его. Ни одна из точек не будет располагаться в центре, они все просто расширяются.

Сколько Вселенной лет?

Возраст Вселенной составляет 13.7 миллиардов лет (+/- 100 миллионов).

У Вселенной есть конец?

Все зависит от ее плотности. Ученым удалось вычислить критическое число. Если истинная плотность превышает его, то расширение приостановится и пространство начнет сжиматься, пока не вернется в изначальную точку. Если же показатель меньше, то мы получим вечное расширение.

Что было первым: галактика или звезды?

Классическая космология гласит, что после Большого Взрыва пространство представляло собою скопление водорода и немного гелия. Гравитация заставила водород сжиматься и создавать структуры. Но ученые точно не знают механизма формирования. Возможно, сначала создались звезды, которые объединились в галактики, или же это были массивные галактические глыбы, внутри которых начали появляться звезды. Основы современной космологии и развитие ее теорий и принципов раскрываются в видео, смотреть которые можно бесплатно онлайн на нашем сайте.

Наблюдательные тесты космологии и стандартный спектр

Астрофизик Олег Верходанов о красном смещении, расширяющейся Вселенной и построении углового спектра мощности:

Нестыковки в космологии

Астрофизик Олег Верходанов о темной энергии, постоянной Хаббла и расширяющейся Вселенной:

Стандартная космологическая модель

Астрофизик Олег Верходанов об угловом спектре мощности, холодной темной материи и измерении космологических параметров:

Гравитация

Космолог Мартин Рис об истории изучения гравитации, теориях Ньютона и Эйнштейна и поиске черных дыр:

Картина мира за один час

Астрофизик Сергей Попов о всеволновой астрономии, современных телескопах и строении Вселенной:

Движение небесных тел: гравитация и приливы

Астроном Владимир Сурдин о движении тел под действием гравитации, конических сечениях и теории приливов:

Что нового открыли в космосе

Астрофизик Сергей Попов о внегалактической астрономии, исследованиях экзопланет и теориях гравитации:

Роль нейтрино в космологии

Физик Дмитрий Горбунов о массе нейтрино, эволюции ранней Вселенной и измерении реликтового излучения:

КОСМОЛОГИЯ

КОСМОЛОГИЯ

Ряд существующих космологич. концепций складывался под влиянием позитивизма. Это сказалось прежде всего в стремлении развивать К. независимо от философии, далее, в неосноват. претензии получить сразу и окончательно исчерпывающее решение вопроса о строении Вселенной в целом. Отсюда стремление рассматривать космологич. модели не как очередные ступеньки бесконечного процесса познания бесконечной Вселенной, а как окончат. результат, не как схематич. модели Метагалактики, а как адекватную модель всей Вселенной. Это сказалось, наконец, в игнорировании диалектич. противоречивости Вселенной. Объект К. – Вселенная – одновременно является предельно всеобщим (ибо не существует ничего, что не входило бы во Вселенную) и в то же время предельно единичным (ибо, помимо нее, вообще ничего не существует). Поэтому, напр., в общем виде вопрос о том, какие черты Вселенной являются единичными, какие особенными и какие всеобщими, без дальнейшего уточнения лишен смысла: наиболее общие свойства Вселенной – это и ее индивидуальные свойства, не присущие какому бы то ни было другому объекту. Но поскольку мы всегда наблюдаем не непосредственно к.-л. "свойства Вселенной в целом" (напр., ее или кривизну ее пространственно-временного континуума), а лишь свойства определ. космич. системы как ее части, то вопрос о разделении индивидуальных, особых и общих свойств приобретает в познании Вселенной решающее . Так, если Вселенная однородна, как утверждает космологич. , то в зависимости от отбора данных можно получить, напр., вывод о ее конечности в пространстве или времени, о том, что возраст Вселенной в целом меньше возраста ее составных частей и т.п. Если же она неоднородна (в широком смысле), т.е. можно допустить, напр., что в каких-то др. метагалактиках действует иной закон тяготения, то это означало бы, что мы наблюдаем лишь единичные и особенные свойства космич. систем, не отражающие общих черт строения Вселенной; тогда доля познанного во Вселенной не превышает ее познанной доли и даже при сколь угодно быстром прогрессе познания мы всегда будем знать лишь бесконечно малую часть Вселенной и никогда не сможем ничего сказать о Вселенной в целом. Др. словами, мы должны были бы сделать вывод, что Вселенная как непознаваема, и предмета К. не существует. Диалектика состоит здесь в том, что бесконечная (в пространстве – времени и по неисчерпаемости свойств) всеохватывающая Вселенная является единством и взаимопроникновением взаимоисключающих противоположностей: однородности и неоднородности, прерывного и непрерывного, единого и многообразного, конечного и бесконечного, симметричного и несимметричного, обратимого и необратимого. Познавая , мы всегда познаем и какие-то черты бесконечного, по части можем делать нек-рые выводы о целом, но не можем просто переносить свойства одного на другое. Проблемы совр. К. должны решаться общими усилиями астрономии, физики и философии. Сов. имеет в этом отношении определ. успехи. До недавнего времени К. уделялось у нас несравненно меньше внимания, чем др. разделам астрономии, что объясняется, во-первых, тем, что до недавнего времени в СССР отсутствовали сверхмощные инструменты, необходимые для работ в области внегалактич. астрономии. Во-вторых, в условиях догматизма, порожденного культом личности Сталина, теоретич. основа совр. К. – – подвергалась со стороны ряда философов и отд. физиков нигилистич. критике, а релятивистская К. рассматривалась ими как всецело идеалистическая. Сейчас, когда оба эти препятствия преодолены, Сов. Союз, занимающий ведущее положение в освоении космоса, имеет также все предпосылки для того, чтобы сделать крупный шаг вперед в теоретич. осмысливании его общих закономерностей.

Лит.: Шкловский И. С., Фотометрич. парадокс для радиоизлучения метагалактики, "Астрономич. журнал", 1953, т. 30, вып. 5, с. 495–508; Внегалактич. и К. Тр. шестого совещания по вопросам космогонии 5–7 июня 1957 г., М., 1959; Зельманов А. Л., К., БСЭ, 2 изд., т. 23; его же, К., в сб.: Астрономия в СССР за тридцать лет (1917–1947), М.–Л., 1948 (имеется библ.); его же, К постановке космологич. проблемы, в кн.: Тр. второго съезда Всесоюзного астрономо-геодезич. об-ва 25–31 янв. 1955 г., М., 1960; Hаан Г. И., О совр. состоянии космологич. науки, в кн.: Вопр. космогонии, т. 6, М., 1958; его же, О бесконечности Вселенной, "Вопр. философии", 1961, No 6; Mак-Витти Г. К., Общая теория относительности и К., М., 1961; Ландау Л. Д. и Лифшиц Е. М., Теория поля, 4 изд., М., 1962; Амбарцумян В. Α., Проблемы внегалактич. исследований, в сб.: Вопр. космогонии, т. 8, М., 1962, с. 3–26; Robertson H. P., Relativistic cosmology, "Rev. of Modern Physics", 1933, v. 5, No 1; Τolman R. С., Relativity, thermodynamics and cosmology, Oxf., 1934; Heckmann O. H. L., Schücking Ε., Newtonsche und Einsteinsche Kosmologie, Handbuch der Physik, hrsg. von S. Flügge, Bd 53, В.–Gött.–Hdlb., 1959; Βondi Η., Cosmology, 2 ed., Camb., 1960.

Наблюдаемые процессы
  • Расширение Вселенной
Теоретические изыскания
  • Космологические модели
    • Уравнение Фридмана

История космологии

Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.

Китай

Эпоха Возрождения

Новаторский характер носит космология Николая Кузанского , изложенная в трактате Об учёном незнании . Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешнюю из них - сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной) .

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер .

Модификацией системы Коперника была система Томаса Диггеса , в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрици , Ян Ессенский) заимствовали только один элемент учения Коперника - вращение Земли вокруг оси, также считая звёзды разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов .

Решительный шаг от гелиоцентризма к бесконечной Вселенной, равномерно заполненной звёздами, сделал итальянский философ Джордано Бруно . Согласно Бруно, при наблюдении из всех точек Вселенная должна выглядеть примерно одинаково. Из всех мыслителей Нового времени он первым предположил, что звёзды - это далёкие солнца и что физические законы во всем бесконечном и безграничном пространстве одинаковы . В конце XVI века бесконечность Вселенной отстаивал и Уильям Гильберт . В середине - второй половине XVII века эти взгляды поддержали Рене Декарт , Отто фон Герике и Христиан Гюйгенс .

Возникновение современной космологии

А. А. Фридман

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц . Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл 3 предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член ». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну .

Возраст Вселенной

Возраст Вселенной - время, прошедшее с момента Большого взрыва . Согласно современным научным данным (результаты WMAP 9), оно составляет 13,830 ± 0,075 млрд лет . Новые данные, полученные с помощью мощного телескопа-спутника «Планк» , принадлежащего Европейскому космическому агентству , показывают, что возраст Вселенной составляет 13,798 ± 0,037 миллиарда лет (68%-й доверительный интервал) .

Возраст Вселенной как функция космологических параметров

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели .

Основные этапы развития Вселенной

Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация :

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, - это планковское время (10 −43 после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий . По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10 −11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10 −2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система .

Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации , когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона , что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

WMAP

Карта микроволнового излучения, построенная WMAP

Собранная WMAP информация позволила учёным построить самую детальную на сегодняшний день карту флуктуаций температуры распределения микроволнового излучения на небесной сфере. Ранее подобную карту удалось построить по данным аппарата НАСА COBE , однако её разрешение существенно - в 35 раз - уступало данным, полученным WMAP.

Данные WMAP показали, что распределение температуры реликтового излучения по небесной сфере соответствует полностью случайным флуктуациям с нормальным распределением . Параметры функции, описывающей измеренное распределение, согласуются с моделью Вселенной, состоящей:

  • на 4 % из обычного вещества,
  • на 23 % из так называемой тёмной материи (возможно, из гипотетических тяжёлых суперсимметричных частиц) и
  • на 73 % из ещё более таинственной тёмной энергии , вызывающей ускоренное расширение Вселенной.

Данные WMAP позволяют утверждать, что тёмная материя является холодной (то есть состоит из тяжёлых частиц, а не из нейтрино или каких-либо других лёгких частиц). В противном случае лёгкие частицы, движущиеся с релятивистскими скоростями, размывали бы малые флуктуации плотности в ранней Вселенной.

Среди других параметров, из данных WMAP определены (исходя из ΛCDM -модели, то есть фридмановской космологической модели с Λ-членом и холодной тёмной материей англ. Cold Dark Matter ) :

  • возраст Вселенной : (13.73 ± 0.12)·10 9 лет;
  • постоянная Хаббла : 71 ± 4 км/с/Мпк ;
  • плотность барионов в настоящее время: (2,5 ± 0,1)·10 −7 см −3 ;
  • параметр плоскостности Вселенной (отношение общей плотности к критической): 1,02 ± 0,02;
  • суммарная масса всех трёх типов нейтрино : <0,7 эВ.

По данным обзора Planck TT, TE, EE+lensing+BAO+JLA+H0

  • 100θ MC = 1.04077 ± 0.00032
  • Ω b h 2 = 0.02225 ± 0.00016
  • Ω c h 2 = 0.1198 ± 0.0015
  • τ=0.079 ± 0.017
  • ln(10 10 As)=3.094 ± 0.034
  • n s = 0.9645 ± 0.0049
  • H 0 = 67.27 ± 0.66
  • Ω m =0.3089 ± 0.0062
  • Ω Λ = 0.6911 ± 0.0062
  • Σm v < 0.17
  • Ω k =0.0008 −0.0039 +0.0040
  • w= −1.019 −0.08 +0.075

Видео по теме

См. также

Примечания

  1. , p. 103.
  2. О влиянии герметической литературы на Брадвардина см. работу .
  3. , с. 2-17 и особенно с. 14.

Космология - наука о закономерностях возникновения и развития Вселенной. Раздел космологии, где изучаются первые этапы развития вселенной, называется «космогония ».

Первые проекты возникли в рамках мифологии (возникновение вселенной и ее развитие - результат деятельности богов). В античной Греции модель мира – 1. сфера подмесячная (земная) – неупорядоченность, хаос; 2.-сфера небесная-упорядоченность, вечность, неизменность. Первой космологичной моделью современного типа принято считать созданную Альбертом Эйнштейном в 1916 г. (построена на теории относительности)– стационарная модель. В конце 20-х гг.- Эдвин Хаббл - галактики расходятся с тем большей скоростью, чем большее расстояние между ними (Вселенная расширяется ). «Красное смещение» в спектрах галактик (эффект Доплера). Красное смещение - при удалении от нас какого-либо источника колебаний, воспринимаемая вами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн). В связи с феноменом расширения вселенной была выработана концепция "Большого взрыва ". Расширение началось с горячего и сжатого(критических) состояния. В процессе расширения универсум охлаждался и образовались структуры. Большинство астрофизиков приняло концепцию большого взрыва после того, как было найдено предсказанное на ее основехолодное излучение .

В соответствии с данными космологии , Вселенная возникла в результате взрывного процесса, получившего названиеБольшой взрыв , произошедшего около 14 млрд лет назад. Теория Большого взрыва хорошо согласуется с наблюдаемыми фактами (например,расширением Вселенной и преобладаниемводорода ) и позволила сделать верные предсказания, в частности, о существовании и параметрахреликтового излучения . В момент Большого взрыва Вселенная занимала микроскопические, квантовые размеры. В соответствии синфляционной моделью , в начальной стадии своей эволюции Вселенная пережила период ускоренного расширения (инфляции). Предполагается, что в этот момент Вселенная была «пустой и холодной» (существовало только высокоэнергетическое скалярное поле), а затем заполнилась горячим веществом, продолжавшим расширяться. О причинах Большого взрыва выдвинуто несколько гипотез. В соответствии с одной из них, взрыв порождёнфлуктуацией вакуума . Причина флуктуации -квантовые колебания. В результате флуктуации вакуум вышел из состояния равновесия, что привело к выделению энергии. Другая гипотеза, оперирующая в терминахтеории струн , предполагает некое внешнее по отношению к нашей Вселенной событие, например, столкновениебран вмногомерном пространстве . Некоторые физики допускают возможность множественности подобных процессов, а значит и множественность вселенных, обладающих разными свойствами. Ряд учёных выдвинули концепцию «кипящейМультивселенной », в которой непрерывно рождаются новые вселенные и у этого процесса нет начала и конца. Необходимо отметить, что сам факт Большого взрыва с высокой долей вероятности можно считать доказанным, но объяснения его причин и подробные описания того, как это происходило, пока относятся к разрядугипотез .

Согласно недавним теоретическим представлениям гравитационный коллапс должен завершиться сжатием вещества буквально «в точку» - до состояния бесконечной плотности. Это значит, что Вселенная возобновляет свое расширение не с нуля, а имея геометрически минимальный объем и физически приемлемое, регулярное состояние. Что же ожидает нашу Вселенную в будущем, если она будет неограниченно расширяться? По мере расширения пространства материя, становится все более разреженной, галактики и их скопления все более удаляются друг от друга, а температура фонового излучения приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарные частицы и холодное излучение будут бессмысленно разлетаться в непрерывно разряжающейся пустоте. Впрочем, черные дыры не останутся без работы. Имея достаточно времени, черные дыры поглотят огромное количество вещества вселенной.

Вселенная как целое является предметом особой астрономической науки - космологии, имеющей древнюю историю. Истоки ее уходят в античность. Космология долгое время находилась под значительным влиянием религиозного мировоззрения, будучи не столько предметом познания, сколько делом веры. Даже И. Кант, пробивший серьезную брешь в религиозном толковании предмета космологии, полностью не освободился от представления об активности сверхъестественного фактора - Творца материи. В XX в. ситуация изменилась кардинально: был достигнут существенный прогресс в научном понимании природы и эволюции Вселенной как целого.

В наши дни космологические проблемы - не дело веры, а предмет научного познания. Они решаются с помощью научных понятий, представлений, теорий, а также приборов и инструментов, позволяющих понять, какова структура Вселенной и как она сформировалась. Конечно, понимание этих проблем пока еще далеко от своего завершения, и, несомненно, будущее приведет к новым великим переворотам в принятых сейчас взглядах на картину мироздания. Тем не менее важно отметить, что здесь мы имеем дело именно с наукой, с рациональным знанием, а не с верованиями и религиозными убеждениями.

Современная космология - это сложная, комплексная и быстро развивающаяся система естественно-научных (астрономия, физика, химия и др.) и философских знаний о Вселенной в целом, основанная как на наблюдательных данных, так и на теоретических выводах, относящихся к охваченной астрономическими наблюдениями части Вселенной. Теоретико-методологический фундамент космологии составляют современные физические теории, а также философские принципы и представления. Глубинная связь космологии и физики базируется на том, что космологи в современной Вселенной ищут «следы» тех процессов, которые происходили в момент рождения Вселенной. А такими «следами» прежде всего выступают фундаментальные свойства физического мира - три пространственных измерения и одно временное; четыре фундаментальных взаимодействия; преобладание частиц над античастицами и др. Эмпирические данные, представленные главным образом внегалактической астрономией, свидетельствуют о том, что мы живем в эволюционирующей, расширяющейся, нестационарной Вселенной.



Имеет ли смысл рассматривать Вселенную в целом как единый целостный динамический объект? Современная космология в основном исходит из предположения, что на этот вопрос следует ответить положительно. Иначе говоря, предполагается, что Вселенная в целом подчиняется тем же естественным законам, которые управляют поведением ее отдельных составных частей. При этом определяющую роль в космологических процессах играет гравитация.

Понятие релятивистской космологии . Поскольку именно тяготение определяет взаимодействие масс на больших расстояниях, а значит, динамику космической материи в масштабах Вселенной, то теоретическим ядром космологии выступает теория тяготения, а современной космологии - релятивистская теория тяготения. Поэтому современную космологию называют релятивистской.

Ньютоновская физика рассматривает пространство и время как «арену», на которой разыгрываются физические процессы; она не связывает воедино пространство и время. Согласно общей теории относительности (см. 9.2), распределение и движение материи изменяют геометрические свойства пространства-времени и в то же время сами зависят от них; гравитационное поле проявляется как искривление пространства-времени (чем значительнее кривизна пространства-времени, тем сильнее гравитационное поле).

Первым релятивистскую космологическую модель попытался построить А. Эйнштейн. В соответствии с методологическими установками классической астрономии о стационарности Вселенной, он исходил из предположения о неизменности свойств Вселенной как целого во времени (радиус кривизны пространства он считал постоянным). Эйнштейн даже видоизменил общую теорию относительности, чтобы она удовлетворяла этому требованию, и ввел дополнительную космическую силу отталкивания, которая должна уравновесить взаимное притяжение звезд.

Вселенная Эйнштейна пространственно конечна; она имеет конечные размеры, но не имеет границ! В этой модели пространственный объем Вселенной с равномерно распределенными в нем галактиками конечен; но границ у этого пространства нет. Оно не распространено бесконечно во все стороны, а замыкается само на себя. Как и на поверхности сферы, в нем можно совершать «кругосветные» путешествия: обитатель такой вселенной мог бы, послав в каком-либо направлении (световой или радио) сигнал, со временем обнаружить, что этот сигнал вернулся к нему с противоположной стороны, обойдя всю Вселенную.

Как и многие другие абстрактные понятия современной физики и астрономии, идея замкнутой, конечной, но неограниченной вселенной трудно представима в наглядных образах. Поэтому часто спрашивают, что же находится «снаружи» конечной вселенной. Дело в том, что этот вопрос не имеет смысла для трехмерных существ, т.е. в пространственно-временной метрике нашего мира. Как не имеет смысла аналогичный вопрос, что находится «вне» поверхности сферы, для плоских существ, вынужденных постоянно жить на сферической поверхности. В такой вселенной просто нет понятия «снаружи». Ведь различение «снаружи» и «внутри» предполагает некоторую границу, которой на самом деле нет, и каждая точка в ней эквивалентна любой другой - ни края, ни центра здесь нет.

Нестационарная релятивистская космология. С критикой предложенной Эйнштейном космологической модели выступил наш отечественный выдающийся математик и физик-теоретик А. А. Фридман. Именно А.А. Фридман, опубликовавший свою работу в 1922 г., впервые сделал из общей теории относительности космологические выводы, имеющие поистине революционное значение: он заложил основы нестационарной релятивистской космологии.

Фридман показал, что теоретическая модель Эйнштейна является лишь частным решением гравитационных уравнений для однородных и изотропных моделей, а в общем случае решения зависят от времени. Кроме того, они не могут быть однозначными и не могут дать ответа на вопрос о форме Вселенной, ее конечности или бесконечности. Исходя из противоположного постулата (о возможном изменении радиуса кривизны мирового пространства во времени), Фридман нашел нестационарные решения «мировых уравнений» Эйнштейна.

Встретив решения Фридмана с большим недоверием, Эйнштейн затем убедился в его правоте и согласился с критикой молодого физика. Нестационарные решения уравнений Эйнштейна, основанные на постулатах однородности и изотропии, называются фридмановскими космологическими моделями.

А. А. Фридман показал, что решения уравнений общей теории относительности для Вселенной позволяют построить три возможные модели Вселенной. В двух из них радиус кривизны пространства монотонно растет и Вселенная бесконечно расширяется (в одной модели - из точки; в другой - начиная с некоторого конечного объема). Третья модель рисовала картину пульсирующей Вселенной с периодически изменяющимся радиусом кривизны. Выбор моделей зависит от средней плотности вещества во Вселенной.

Модели Вселенной Фридмана уже вскоре получили удивительно точное подтверждение в непосредственных наблюдениях движений далеких галактик - в эффекте «красного смещения», который свидетельствует о взаимном удалении всех достаточно далеких друг от друга галактик. Таким образом, в настоящее время наблюдается расширение Вселенной. Характер дальнейшей ее эволюции зависит от средней плотности вещества во Вселенной и его отношения с критической плотностью ρ = ЗH 2 /8πG. Если средняя плотность окажется больше критической, то расширение Вселенной через некоторое время прекратится и сменится сжатием. Если средняя плотность меньше критической, то расширение будет продолжаться неограниченно долго.

В настоящее время критическая плотность определяется величиной 10 -29 г/см 3 . А средняя плотность вещества во Вселенной по современным представлениям оценивается 3 10 -31 г/см 3 . Иначе говоря, Вселенная будет сколь угодно долго расширяться. Но определение средней плотности вещества во Вселенной пока ненадежно. Во Вселенной могут присутствовать не обнаруженные еще виды материи, дающие свой вклад в среднюю плотность. И тогда на «вооружение» придется брать «закрытую» модель Вселенной, в которой предполагается, что расширение в будущем сменится сжатием.

Космологический постулат . В современной космологии представление о нестационарности Вселенной удивительным образом сочетается с представлением об однородности Вселенной. Достаточно неожиданно то, что Вселенная оказывается однородной в самых различных смыслах.

Во-первых, Вселенная однородна в том смысле, что структурные элементы далеких звезд и галактик, физические законы, которым они подчиняются, и физические константы, по-видимому, с большой степенью точности одинаковы повсюду, т.е. те же, что и в нашей области Вселенной, включая Землю. Типичная галактика, находящаяся в сотне миллионов световых лет от нас, выглядит в основном также, как наша. Спектры атомов, следовательно, законы химии и атомной физики там идентичны известным на Земле. Это обстоятельство позволяет уверенно распространять открытые в земной лаборатории законы физики на более широкие области Вселенной.

Во-вторых, говоря о космической однородности Вселенной, имеют в виду также однородность распределения вещества. Вещество Вселенной «разбросано» в виде сгустков - оно собрано в звезды, которые в свою очередь группируются в скопления, в галактики, в скопления галактик. В настоящее время распространено убеждение, подкрепленное наблюдениями, что подобное объединение останавливается на скоплениях галактик, а более крупномасштабное распределение вещества одинаково во всей Вселенной. Это распределение однородно (одинаково во всех областях) и изотропно (одинаково во всех направлениях). Предположение о том, что Вселенная в крупных масштабах однородна, разделяют большинство (хотя и не все) космологи; оно известно как космологический постулат.

Представление об однородности Вселенной еще раз доказывает, что Земля не занимает во Вселенной сколько-нибудь привилегированного положения. Даже после Коперника у астрономов время от времени возникали допущения, что с Землей, Солнцем, нашей Галактикой может быть связана какая-нибудь исключительность. Но сейчас физические условия в ближайших к нам областях Вселенной не рассматриваются как особые; доказано, что они характерны для любой области во Вселенной. Конечно, Земля, Солнце и Галактика кажутся нам, людям, важными и исключительными, но для Вселенной в целом они такими не являются.

Возраст Вселенной . Космологический постулат может трактоваться еще более широко: не только наша область Вселенной типична для нее в целом, но и наша современная эпоха типична во все времена. То есть Вселенная, когда бы ее ни рассматривали, должна была бы выглядеть более или менее одинаковой - так, как мы видим ее сейчас. Такое представление о Вселенной, распространенное среди астрономов в XIX в., существенно изменилось в XX в. Одно из важнейших следствий фридмановских космологических моделей - представление об ограниченности эволюции Вселенной во времени и наличии особых, сингулярных состояний, в которых радиус Вселенной обращается в нуль, а плотность материи - в бесконечность. (О теоретических моделях таких состояний см. далее.) Ограниченность эволюции во времени приводит к понятию возраста Вселенной.

В 1929 г. Э. Хаббл показал, что удаленные галактики разбегаются от нас; и чем дальше галактика, тем быстрее она удаляется. Отсюда следовал однозначный вывод - Вселенная находится в состоянии расширения. Это открытие подтвердило идеи Фридмана и коренным образом изменило все представления космологии. Расширяющаяся Вселенная - это Вселенная изменяющаяся. А значит, у нее есть своя история, время возникновения и время гибели; можно сказать, своя биография, имеющая даты рождения и смерти.

Закон Хаббла дает возможность определить возраст Вселенной. Современная оценка постоянной Хаббла от 50 до 100 км/(с Мпк). Обратная величина t= 1/Н имеет размерность времени и равна 10- 20 млрд лет, что определяет приблизительный возраст нашей Вселенной. В соответствии с наиболее распространенным представлением возраст Вселенной составляет 15 млрд лет.

Космологический горизонт . Конечность времени, прошедшего с момента сингулярности, приводит к существованию космологического горизонта - границы, отделяющей область пространства, которую в данный момент может видеть наблюдатель, oт области, которая для него пока принципиально ненаблюдаема.

Существование космологического горизонта связано с расширением Вселенной. От момента сингулярного состояния Вселенной прошло t ≈ 15-20 млрд лет. За это время свет успевает пройти в расширяющейся Вселенной конечное расстояние l ct , т.е. примерно 15-20 млрд световых лет. Поэтому каждый наблюдатель в момент t" после начала расширения может видеть только область, ограниченную сферой, имеющей в этот момент радиус r = ct". За этой границей, являющейся горизонтом наблюдений, объекты принципиально ненаблюдаемы в момент t" : свет от них еще не успел дойти до наблюдателя, даже если он вышел в момент начала расширения Вселенной. Вблизи горизонта мы видим вещество в далеком прошлом, когда плотность его была гораздо больше сегодняшней.

С течением времени горизонт расширяется по мере того, как к наблюдателю доходит свет от более далеких областей Вселенной. В настоящее время космологический горизонт равен: ct ≈ c/H ≈ 6000 Мпк (при H = 50 км/(с Мпк). Таким образом, он охватывает больше половины доступного в принципе для наблюдений объема пространства Вселенной. С каждым днем доступная земным телескопам область Вселенной возрастает на 10 18 кубических световых лет.

Представление о космологическом горизонте позволяет понять, что в каждый данный момент для наблюдателя доступна некоторая конечная часть объема Вселенной, с конечным числом галактик и звезд. Более того, очевидно, что у каждого наблюдателя, находящегося в каком-либо месте во Вселенной, в каждый данный момент времени свой горизонт, своя конечная Вселенная. Это подобно тому, как и на земном шаре каждый наблюдатель имеет свой горизонт.

Строго говоря, космологический горизонт ограничен еще одним фактором, связанным со свойствами электромагнитного поля. На ранних стадиях развития Вселенной при большой плотности вещества фотоны не могли свободно распространяться из-за поглощения и рассеяния. До Земли в неискаженном виде дошло только то излучение, которое возникло в эпоху, когда Вселенная стала практически прозрачной для излучения, и не раньше. Эта эпоха связана с процессом рекомбинации водорода, который протекал через 1 млн лет после начала расширения Вселенной и соответствовал плотности вещества ρ = 10 -20 г/см 3 . Но 1 млн лет-весьма незначительный период по сравнению с 15-20 млрд лет. Поэтому горизонт видимости во Вселенной практически определяется началом ее расширения.

Эволюция Вселенной