Группа крови. Физиологические основы переливания крови. Физиология системы крови Группы крови. Правила переливания Определение Группы Крови

В 1901 г. было открыто, что в крови здоровых людей могут содержаться вещества, способные вызывать агглютинацию (склеивание) эритроцитов других людей. Изучение агглютинации эритроцитов одного человека в плазме или сыворотке крови другого человека создало научную основу для важного лечебного мероприятия - переливания крови.

Переливание крови производят при больших кровопотерях, некоторых отравлениях (в частности, когда нарушена способность гемоглобина связывать кислород), когда понижено содержание гемоглобина в крови и по многим другим медицинским показаниям. В прошлом попытки переливания крови нередко приводили к смерти или же вызывали тяжелые нарушения состояния организма. Тяжелые последствия переливания крови наступают в том случае, когда эритроциты крови донора (человека, дающего кровь) агглютинируются плазмой крови реципиента (человека, получающего кровь). Это бывает, когда в эритроцитах введенной крови содержится агглютинируемое вещество - агглютиноген, а в плазме реципиента находится соответствующее агглютинирующее вещество - агглютинин. В результате агглютинации эритроцитов и последующего их гемолиза возникают тяжелые состояния организма - гемотрансфузионный шок, который может привести к смерти.

В эритроцитах крови людей Я. Янским и К. Ландштейнером были обнаружены два агглютинируемых фактора: агглютиноген А и агглютиноген В, а в плазме - два агглютинирующих агента: агглютинин α и агглютинин β. В крови человека никогда не встречается одновременно агглютиноген А с агглютинином а и агглютиноген В с агглютинином 3, поэтому в организме агглютинации собственных эритроцитов не происходит.

Установлено, что всех людей можно по наличию или отсутствию в эритроцитах агглютиногенов, а в плазме агглютининов разделить на четыре группы. У людей I группы по классификации Янского эритроциты не содержат агглютиногенов, а плазма содержит агглютинины а и р. У людей II группы в эритроцитах имеется агглютиноген А и в плазме агглютинин β.

К III группе относятся люди, у которых в эритроцитах находятся агглютиноген Вив плазме агглютинин а. Кровь IV группы характеризуется наличием в эритроцитах агглютиногенов А и В и отсутствием в плазме агглютининов.

Обозначив агглютинацию знаком плюс (+), а ее отсутствие знаком минус (-), можно представить результаты смешивания эритроцитов и сыворотки людей различных групп следующим образом.

Группа сыворотки Группа эритроцитов
I(0) II(A) III(В) IV(AB)
I (α и β) - + + +
II (β) - - + +
III (α) - + - +
IV (0) - - - -

Группу крови определяют путем смешивания капли крови исследуемого человека со стандартными сыворотками, содержащими известные агглютинины. Для этого достаточно иметь две сыворотки II и III группы, так как при смешивании этих сывороток с эритроцитами (или кровью) исследуемого результаты агглютинации или ее отсутствие дают возможность точного определения любой группы (рис. 7).

Определение группы крови имеет большое практическое значение для выяснения возможности переливания крови. Для этой цели важно установить только неагглютинируемость эритроцитов донора, так как плазма вводимой крови вследствие ее разведения кровью реципиента не вызывает агглютинации эритроцитов последнего.

Людям, принадлежащим к I группе, можно переливать кровь только I группы. Кровь же I группы можно переливать людям всех групп. Поэтому люди I группы являются универсальными донорами. Людям IV группы можно вводить кровь всех четырех групп, кровь же IV группы можно переливать лишь людям IV группы. Людям II и III группы можно переливать кровь одноименной группы, а также кровь людей I группы. Кровь
людей II или III группы можно переливать людям соответствующей группы и, кроме того, IV группы. Эти отношения схематически изображены на рис. 8.

При исследовании групп крови в разных странах получены следующие средние данные о принадлежности людей к той или иной группе: I группа - 40%, II группа - 39%, III группа 15%, IV группа - 6%.

Рис. 7. Определение групп крови.
Сверху - положение на стекле двух капель исследуемой крови и капель сыворотки II и III группы. Римскими цифрами обозначены группы сыворотки крови. 1 - агглютинации сывороткой II и III группы не происходит - кровь I группы; 2 - агглютинация происходит сывороткой III группы - кровь II группы; 3 - агглютинация сывороткой II группы - кровь III группы; 4 - кровь агглютинируется сывороткой II и III групп - кровь IV группы.


Рис. 8. Схема допустимого переливания крови. Стрелки показывают, каким группам, кроме одноименной, можно переливать кровь определенной группы.

В эритроцитах большинства людей (85%) имеется еще один фактор, обнаруженный впервые Ландштейнером и Винером в 1940 г. в крови обезьян макак (Маcacus rhesus) и потому названный резус-фактором (сокращенно Bh-фактор). Если кровь человека, содержащего этот фактор (резус-положительную кровь), перелить человеку, не имеющему его (резус-отрицательному), то у последнего образуются специфические агглютинины и гемолизины. Повторное введение такому человеку резус-положительной крови может вызвать агглютинацию и тяжелые осложнения (гемотрансфузионный шок).

Особое значение имеют случаи, когда резус-положительный плод развивается у резус-отрицательной матери. В этом случае резус-фактор плода диффундирует через плаценту в кровь матери, что приводит к образованию в крови матери специфических антирезусных веществ, диффундирующих через плаценту обратно в кровь плода и могущих вызвать у него тяжелые нарушения вследствие агглютинации и гемолиза его эритроцитов. Этим объясняются некоторые случаи мертворождаемости.

В последнее время учение о группах крови значительно усложнилось открытием новых агглютиногенов. Так, группа А оказалась состоящей из ряда подгрупп (А1, А2, А3, А4 и др.). Агглютиноген А2 в отличие от A1 не дает агглютинации при слабо активных сыворотках, содержащих агглютинин α. В силу этого кровь этих лиц может быть ошибочно отнесена к I группе, что может явиться причиной тяжелых осложнений при переливании крови. Агглютиногены А3, А4, А5 и др. являются еще более слабыми. Bh-фактор существует в виде трех вариантов: Rh°, Rh", Rh".

В эритроцитах, не содержащих Rh-фактора, открыты факторы Hr (противоположные резус-фактору), которые также обнаружены в трех вариантах: Hr°, Hr", Hr".

Кроме того, найдены агглютиногены М, N, S, Р, D, С, К, Ln, Le, Fy, Jk и др. Комбинации этих факторов дают огромное количество сочетаний и, таким образом, в настоящее время уже различают несколько сот тысяч групп крови. Однако для переливания крови наибольшее значение имеет определение только основных четырех групп крови и Rh- и Hr-факторов.

В средние века делались неоднократные попытки переливания крови от животных человеку и от человека человеку. Однако практически все они заканчивались трагически. Первое удачное переливание человеческой крови пострадавшему произвел в 1667 году врач Дени. Причины тяжелых осложнений, возникающих при гемотрансфузиях, первым установил в 1901 году Карл Ландштейнер. Он смешивал капли крови различных людей и обнаружил, что в ряде случаев происходит склеивание эритроцитов – агглютинация и их последующий гемолиз. На основании своих опытов Ландштейнер сделал вывод, что в эритроцитах имеются белки-агглютиногены, способствующие их склеиванию. Он выявил 2 агглютиногена А и В. На основании их отсутствия или наличия в эритроцитах разделил кровь на I, II и III группы. В 1903 Штурли обнаружил IV группу. Ланштейнер и Ямский установили, что эритроциты содержат агглютиногены А и В, а плазма крови – агглютинины альфа и бета. В крови никогда одновременно не присутствуют агглютиноген А и агглютинин альфа, а также агглютиноген В и агглютинин бета.

Свойствами агглютиногена обладает мембранный гликопротеид эритроцитов – гликофорин . Агглютинины являются иммуноглобулинами М и G, т.е. гамма-глобулины.

Первоначально новорожденный имеет лишь агглютиногены на мембране эритроцитов. Однако затем компоненты пищи, вещества, вырабатываемые микрофлорой кишечника, способствуют синтезу тех агглютининов, антигенов на которые в эритроцитах данного человека нет.

Группы крови системы АВ0 обозначаются римскими цифрами и дублирующим названием антигена:

I(0) – на эритроците агглютиногенов нет, в плазме агглютинины альфа и бета;

II(А,бета) – агглютиноген А, агглютинин бета;

III(В,альфа) – агглютиноген В, агглютинин альфа;

IV(AB) – в эритроцитах агглютиногены А и В, агглютининов в плазме нет.

В настоящее время обнаружено, что в эритроцитах I группы имеется слабый Н-антиген. Агллютиногены А делятся на подтипы А1 и А2. Первый подтип встречается у 80% людей и обладает более выраженными антигенными свойствами. Реакций при переливании между кровью этих подгрупп не происходит.

Наследование группы крови осуществляется за счет генов А, В и 0. В хромосомах человека содержится два из них. Гены А и В являются доминантными. Поэтому у родителей со II и III группой крови ребенок может иметь любую из 4-х групп.У 46% европейцев кровь первой группы, 42% – второй, 9% – третьей и 3% четвертой.

Резус-фактор

В 1940 году К.Ландштейнер и И.Винер обнаружили в эритроцитах еще один агглютиноген. Впервые он был найден в крови макак-резусов. Поэтому был назван ими резус-фактором. В отличие от антигенной системы АВ0, где к агглютиногенам А и В имеются соответствующие агглютинины, агглютиниов к резус-антигену в крови нет. Они вырабатываются в том случае, если резус-положительную кровь (содержащую резус-фактор) перелить реципиенту с резус-отрицательной кровью. При первом переливании резус-несовместимой крови никакой трансфузионной реакции не будет. Однако в результате сенсибилизации организма реципиента, через 3-4 недели в его крови появятся резус-агглютинины. Они очень длительное время сохраняются. Поэтому при повторном переливании резус-положительной крови этому реципиенту произойдет агглютинация и гемолиз эритроцитов донорской крови.

Резус-фактор крови имеет большое значение в акушерской практике, т.к. эритроциты плода могут попадать в кровяное русло матери. Если плод имеет резус-положительную кровь, а мать резус-отрицательную, то попавшие в ее организм с эритроцитами плода резус-антигены, вызовут образование резус-агглютининов. Титр резус-агглютининов нарастает медленно, поэтому при первой беременности особых осложнений не возникает. Если при повторной беременности плод опять наследует резус-положительную кровь, то поступающие через плаценту резус-агглютинины матери вызовут агглютинацию и гемолиз эритроцитов плода. В легких случаях возникает анемия, гемолитическая желтуха новорожденных . В тяжелых – эритробластоз плода и мертворожденность . Это явление называется резус-конфликтом . С целью его профилактики сразу после первых подобных родов вводят антирезус-глобулин. Он разрушает резус-положительные эритроциты, попавшие в кровь матери.

Существует 6 разновидностей резус-агглютиногенов: С, D, Е, с, d, e . Наиболее выраженные антигенные свойства у резус-агглютиногена D . Именно им определяется резус-принадлежность крови. Другие антигены этой системы практического значения не имеют.В настоящее время известно около 400 антигенных систем крови. Кроме систем АВ0 и Rh, известны систем MNSs, P, Келла, Кидда и другие. Учитывая все антигены, число их комбинаций составляет около 300 млн. Но так как их антигенные свойства выражены слабо, для переливания крови их роль чаще всего незначительна.

Переливание несовместимой крови вызывает тяжелейшее осложнение – гемотрансфузионный шок . Он возникает вследствие того, что склеившиеся эритроциты закупоривают мелкие сосуды. Кровоток нарушается. Затем происходит их гемолиз, и из эритроцитов донора в кровь поступают чужеродные белки. В результате резко падает кровяное давление, угнетается дыхание, сердечная деятельность, нарушается работа почек, центральной нервной системы. Переливание даже небольших количеств такой крови может закончиться смертью реципиента.

В настоящее время допускается переливание только одногрупповой крови по системе АВ0. Обязательно учитывается и ее резус-принадлежность.

Определение групп крови

Поэтому перед каждым переливанием обязательно проводится определение группы и D-антигена крови донора и реципиента. Для определения групповой принадлежности, каплю исследуемой крови смешивают на предметном стекле с каплей стандартных сывороток I, II и III групп. Таким методом определяются антигеннные свойства эритроцитов. Если ни в одной из сывороток не произошла агглютинация, следовательно в эритроцитах агглютиногенов нет. Это кровь I группы. Когда агглютинация наблюдается с сыворотками I и III групп, значит эритроциты исследуемой крови содержат агглютиноген А. Т.е. это кровь II группы. Агглютинация эритроцитов с сыворотками I и II групп говорит о том, что в них имеется агглютиноген В и эта кровь III группы. Если во всех сыворотках наблюдается агглютинация, значит эритроциты содержат оба антигена А и В. Т.е. кровь IV группы. Желательно проводить исследование и с сывороткой IV группы. Более точно группу крови можно определить с помощью стандартных эритроцитов I, II, III и IV групп. Для этого их смешивают с сывороткой исследуемой крови и определяют содержание в ней агглютининов. Резус принадлежность крови определяют путем ее смешивания с сывороткой, содержащей резус-агглютинины.

Кроме этого, чтобы избежать ошибки при определении группы крови и наличия D-антигена, применяют прямую пробу. Она необходима и для выявления несовместимости крови по другим антигенным признакам. Прямую пробу производят путем смешивания эритроцитов донора с сывороткой реципиента при 37°С. При отрицательных результатах первые порции крови переливаются дробно.

Использовавшаяся раньше схема переливания крови разных групп, учитывающая содержание одноименных агглютининов и агглютиногенов сейчас не применяется. Это связано с тем, что агглютинины донорской крови вызывают агглютинацию и гемолиз эритроцитов реципиента.

Лимфа

Лимфа образуется путем фильтрации тканевой жидкости через стенку лимфатических капилляров. В лимфатической системе циркулирует около 2 литров лимфы. Из капилляров она движется по лимфатическим сосудам, проходит лимфатические узлы и по крупным протокам поступает в венозное русло. Удельный вес лимфы 1,012-1,023 г/мм 3 . Вязкость 1,7 пуаз, а рН ~ 9,0. Электролитный состав лимфы сходен с плазмой крови. Но в ней больше анионов хлора и бикарбоната. Содержание белков в лимфе меньше, чем плазме: 2,5-5,6% или 25-65 г/л. Из форменных элементов лимфа в основном содержит лимфоциты. Их количество в ней 2"000-20"000 мкл (2-20·10 9 /л). Имеется и небольшое количество других лейкоцитов. Из них больше всего моноцитов. Эритроцитов в норме нет. Благодаря наличию в ней тромбоцитов, фибрина, факторов свертывания лимфа способна образовывать тромб. Однако время ее свертывания больше, чем у крови.

Лимфа выполняет следующие функции :

1. поддерживает постоянство объема тканевой жидкости путем удаления ее избытка;

2. перенос питательных веществ, в основном жиров, от органов пищеварения к тканям;

3. возврат белка из тканей в кровь;

4. удаление продуктов обмена из тканей;

5. защитная функция. Обеспечивается лимфоузлами, иммуноглобулинами, лимфоцитами, макрофагами;

6. участвует в механизмах гуморальной регуляции, перенося гормоны и другие ФАВ.

Защитная функция крови. Иммунитет. Регуляция иммунного ответа

Организм защищается от болезнетворных агентов с помощью неспецифических и специфических защитных механизмов. Одним из них являются барьеры, т.е. кожа и эпителий различных органов (ЖКТ, легких, почек и т.д.). Кроме этого, в крови и лимфе имеются неспецифические клеточные и гуморальные механизмы. Эти механизмы способны обезвреживать даже факторы, с которыми организм раньше не сталкивался. К неспецифическим защитным механизмам крови относятся неспецифический клеточный и гуморальный иммунитет. Неспецифический клеточный иммунитет обусловлен фагоцитарной активностью гранулоцитов, моноцитов, лимфоцитов и тромбоцитов.

Неспецифический гуморальный иммунитет связан с наличием в крови и других жидкостях организма естественных антител и ряда белковых систем. Раньше считали, что естественные антитела образуются в организме без контакта с антигеном. Однако сейчас установлено, что они не синтезируются самопроизвольно. Они возникают в результате контакта организма с облигатной кишечной микрофлорой, т.е. иммунной реакции. Имеется и несколько защитных белковых комплексов.

1. Лизоцим . Белок, обладающий ферментативной активностью и подавляющий развитие бактерий и вирусов. Он содержится в гранулоцитах крови и макрофагах легких. При их разрушении выделяется в окружающую среду. Лизоцим имеется в слезной жидкости, слизи носа и кишечника.

2. Пропердин . Комплекс белковоподобных веществ. Участвует в лизисе бактерий.

3. Система комплемента . Комплекс 11 белков плазмы, активирующийся при иммунологических реакциях. Совместно с пропердином участвует в лизисе бактерий.

4. Интерферон . Белок, вырабатываемый многими клетками при поступлении в них вирусов. Начинает выделяться в кровь до появления иммунных антител. Препятствует выработке рибосомами пораженных клеток вирусного белка.

5. Лейкины . Выделяются лейкоцитами.

6. Плакины . Продукт тромбоцитов. Те и другие разрушают микроорганизмы.

Специфические защитные механизмы включают специфический клеточный и гуморальный иммунитет.

Специфический клеточный иммунитет обеспечивают Т-лимфоциты . Лимфоциты, образующиеся из стволовых лимфоидных клеток костного мозга, поступают в тимус и превращаются в иммунокомпетентные Т-лимфоциты. Затем эти лимфоциты переходят в кровь. При контакте с антигеном часть Т-лимфоцитов пролиферирует. Одна часть образовавшихся дочерних клеток связывается с антигеном (бактериями) и разрушает его. Для этой реакции антиген-антитело необходимо участие Т-хелперов. Другая часть дочерних клеток преобразуется в Т-клетки иммунологической памяти, которые запоминают структуру антигена. Они имеют большую продолжительность жизни. При повторном контакте Т-клеток памяти с этим антигеном они узнают его. Начинается их интенсивная пролиферация с образованием большого количества Т-киллеров, а также Т-супрессоров. Т-супрессоры подавляют выработку антител В-лимфоцитами в этот момент. Этот вторичный клеточный иммунный ответ развивается примерно через 48 часов и называется иммунным ответом замедленного типа , т.к. раньше него возникает вторичный гуморальный иммунный ответ. Примером такой иммунной реакции является покраснение и отек кожи в результате контакта с некоторыми веществами, например краской урсолом.

Специфический гуморальный иммунитет обеспечивается В-лимфоцитами. Они превращаются в иммунокомпетентные клетки в лимфатических узлах тонкого кишечника, миндалинах, аппендиксе. Затем В-лимфоциты выходят в кровь и разносятся ею в селезенку и лимфатические узлы лимфатического русла. При первом контакте с антигеном они пролиферируют. Это явление называется начальной активацией или сенсибилизацией . Одна часть образующихся дочерних клеток превращается в клетки памяти и покидает центры размножения. Другая часть лимфоцитов оседает в лимфатических узлах, превращаясь в плазматические клетки. Эти клетки вырабатывают гуморальные антитела, поступающие в кровь. Выработку иммуноглобулинов стимулируют Т-хелперы. Многие иммуноглобулины очень длительно сохраняются в крови. При повторном контакте антител с антигеном развивается быстрая и сильная иммунная реакция. Поэтому их называют иммунными реакциями немедленного типа . Они наблюдаются при гемотрансфузионном шоке, аллергии, бронхиальной астме и т.д.

В медицине для формирования специфического иммунитета, используется вакцинация . При пересадке органов, наоборот, с помощью иммунодепрессантов определенные звенья иммунитета подавляются. Это предотвращает отторжение трансплантата.

Конец работы -

Эта тема принадлежит разделу:

Физиология, как наука

Физиология дословно это учение о природе это наука изучающая процессы жизнедеятельности организма составляющих его физиологических систем.. цель задачи предмет физиологии.. опыты на животных дают много сведений для понимания функционирования организма однако физиологические процессы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития физиологии
Первоначально представления о функциях организма складывались на основе работ ученых Древней Греции и Рима: Аристотеля, Гиппократа, Галлена и др., а так же ученых Китая и Индии. Физиология

Эксперимент и его роль
Физиология - наука экспериментальная и ее основным методом является эксперимент: 1. Острый опыт или вивисекция («живосечение»). В его процессе под наркозом производят хирургическое

Связь физиологии с другими науками
Физиология - теоретическая основа медицины. Она является фундаментом для решения проблем, связанных с сохранением здоровья и работоспособности человека в разных условиях существования и в разные во

Механизм регуляции функций организма
Организм - сложная саморегулирующаяся система, состоящая из клеток, тканей, органов. Они в свою очередь образуют физиологические системы, которые выполняют комплекс однородных функций (например, си

Нервная регуляция функций
Животные имеют специальные органы движения и им требуется быстрое и точное согласование сокращения мышц. В результате у животных в процессе эволюции сформировалась нервная регуляция. Нервная

Биологические и функциональные системы
Развитие физиологии в 19-20 вв. позволило осуществить глубинные механизмы, субмолекулярные процессы в организме. Было накоплено огромное количество аналитических данных о функциях клеток, тканей, о

Принципы саморегуляции организма. Понятие о гомеостазе, гомеокинезе
Основным свойством живых систем является способность к саморегуляции, к созданию оптимальных условий для взаимодействия всех элементов организма и обеспечения его целостности.

Законы раздражения. Параметры возбудимости
Реакция клеток, тканей на раздражитель определяется законами раздражения: 1) Закон "все или ничего": При допороговых раздражениях клетки ответной реакции не возникает, при

Строение и функции цитоплазматической мембраны клеток
Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного - белкового; среднего - бимолекулярного слоя липидов; внутреннего - белкового. Толщи

Механизмы возбудимости клеток. История исследования биоэлектрических явлений
В основном передаваемая в организме информация имеет вид электрических сигналов (например, нервные импульсы). Впервые наличие животного электричества установил физиолог Л. Гальвани в 1786 г. С цель

Ультраструктура скелетного мышечного волокна
Двигательные единицы. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми

Биомеханика мышечных сокращений. Одиночное сокращение, суммация, тетанус
При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выдел

Режимы сокращения. Сила и работа мышц
Различают следующие режимы мышечного сокращения: 1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

Физиология процессов межклеточной передачи возбуждения
Проведение возбуждения по нервам Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки – дендриты и аксоны, т.е. нервные во

Механизмы синаптической передачи. Постсинаптические потенциалы
Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выделение происх

Торможение в ЦНС
Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. За

Закономерности проведения возбуждения и процессов торможения в нервных центрах
Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов. Нейроны сложных нервных центров имеют многочисленные связи между собой, обр

Механизмы координации рефлексов
Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных дуг и нервных центров. Координация рефлекторной деятельности – это такое взаимодействие нервных цент

Функции спинного мозга
Спинной мозг выполняет рефлекторную и проводниковую функции. Первая обеспечивается его нервными центрами, вторая - проводящими путями. Он имеет сегментарное строение. Причем деление на сегменты явл

Рефлексы спинного мозга
Все рефлексы спинного мозга делятся на соматические (двигательные) и вегетативные. Соматические рефлексы делятся на сухожильные (миотатические) и кожные. Сухож

Функции моста и среднего мозга
Мост имеет тесные функциональные связи со средним мозгом. Эти отделы ствола мозга также осуществляют проводниковую и рефлекторную функции. Проводниковая обеспечивается восходящими и нисходящими пут

Функции промежуточного мозга
Функционально в нем выделяют 2 отдела: таламус и гипоталамус. В таламусе происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходя

Лимбическая система
К лимбической системе (ЛС) относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также п

Структурно-функциональные особенности вегетативной нервной системы
Все функции организма условно делят на соматические и вегетативные. Первые связаны с деятельностью мышечной системы, вторые выполняются внутренними органами, кровеносными сосудами, кровью, железами

Физиология системы крови
Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами

Механизмы поддержания кислотно-щелочного равновесия крови
Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и

Строение и функции эритроцитов. Гемолиз
Эритроциты (Э) – это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска. В среднем их диаметр около 7,5 м

Гемоглобин. Его разновидности и функции
Гемоглобин (Нb) это хемопротеин, содержащийся в эритроцитах. Его молекулярная масса 66"000 Дальтон. Молекулу гемоглобина образуют четыре субъединицы, каждая из которых включает гем, соединенный с а

Функции лейкоцитов
Лейкоциты (белые кровяные тельца) – это клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, поэтому их называют гранулоцитами. У других зернистость отсутствует, их

Структура и функции тромбоцитов
Тромбоциты (кровяные пластинки) имеют дисковидную форму и диаметр 2-5 мкм. Они образуются в красном костном мозге путем отщепления участка цитоплазмы с мембраной от мегакариоцитов. Тромбоциты не им

Регуляция эритро- и лейкопоэза
У взрослых процесс образования эритроцитов – эритропоэз, происходит в красном костном мозге плоских костей. Они образуются из ядерных стволовых клеток, проходя стадии проэри

Механизмы остановки кровотечения. Процесс свертывания крови
Остановка кровотечения, т.е. гемостаз может осуществляться двумя путями. При повреждении мелких сосудов она происходит за счет первичного или сосудисто-тромбоцитарного гемостаза. Он о

Противосвертывающая система
В здоровом организме не возникает внутрисосудистого свертывания крови, потому что имеется и система противосвертывания. Обе системы находятся в состоянии динамического равновесия. В противосвертыва

Физиология кровообращения
Кровообращение – это процесс движения крови по сосудистому руслу, обеспечивающий выполнение ею своих функций. Физиологическую систему кровообращения составляют сердце и сосуд

Соотношение возбуждения, возбудимости и сокращения сердца. Нарушения ритма и функций проводящей системы сердца
В связи с тем, что сердечная мышца является функциональным синцитием, сердце отвечает на раздражение по закону "все или ничего". При исследовании возбудимости сердца в различные фазы серд

Рефлекторная и гуморальная регуляция деятельности сердца
Выделяют 3 группы сердечных рефлексов: 1. собственные или кардиокардиальные – возникают при раздражении рецепторов самого сердца; 2. кардиовазальные – наблюдаются при возбуждении

Проявления сердечной деятельности. Механические и акустические проявления
Деятельность сердца сопровождается механическими, акустическими и биоэлектрическими явлениями. К механическим проявлениям активности сердца относится верхушечный толчок – это

Движение крови по сосудам
Функциональная классификация кровеносных сосудов. Факторы, обеспечивающие движение крови Все сосуды малого и большого круга, в зависимости от строения и ф

Механизмы регуляции тонуса сосудов
Миогенная регуляция. Тонус сосудов во многом определяет параметры системной гемодинамики и регулируется миогенными, гуморальными и нейрогенными механизмами. В основе миогенн

Рефлекторная регуляция системного артериального кровотока
Все рефлексы, посредством которых регулируется тонус сосудов и деятельность сердца, делятся на собственные и сопряженные. Собственными являются рефлексы, возникающие при раздражении

Особенности кровообращения в сердце, мозге, легких, почках. Регуляция органного кровообращения
СЕРДЦЕ снабжается кровью через коронарные артерии, отходящие от аорты. Они разветвляются на эпикардиальные артерии, от которых отходят интрамуральные снабжающие кровью миокард. В с

Механизмы внешнего дыхания
Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое

Функции воздухоносных путей. Защитные дыхательные рефлексы. Мертвое пространство
Воздухоносные пути делятся на верхние и нижние. К верхним относятся носовые ходы, носоглотка, к нижним гортань, трахея, бронхи. Трахея, бронхи и бронхиолы являются проводящей зоной легких. К

Дыхание при повышенном атмосферном давлении. Кессонная болезнь
Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание урежается до 2-4 раз в минуту. Вдох укорачивается, а выдох уд

Физиология пищеварения
Значение пищеварения и его виды. Функции пищеварительного тракта Для существования организма необходимо постоянное восполнение энергетических затрат и пос

Состав и свойства желудочного сока. Значенние его компонентов
В сутки образуется 1,5-2,5 литра сока. Вне пищеварения выделяется всего 10-15 мл сока в час. Такой сок обладает нейтральной реакцией и состоит из воды, муцина и электролитов. При приеме пищи количе

Регуляция желудочной секреции
Пищеварительная секреция регулируется посредством нейрогуморальных механизмов. В ней выделяют три фазы: сложнорефлекторную, желудочную и кишечную. Сложнорефлекторная делится на условнорефл

Механизмы выработки и регуляции секреции панкреатического сока
Проферменты и ферменты поджелудочной железы синтезируются рибосомами ацинарных клеток и сохраняются в них в виде гранул. В период пищеварения они выделяется в ацинарные протоки и разбавляются в них

Функции печени. Роль печени в пищеварении
Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других веществ. Ее основные функции: 1. Антитоксическая. В ней обезвреживаются токсическ

Значение тонкого кишечника. Состав и свойства кишечного сока
Кишечный сок является продуктом бруннеровых, либеркюнновых желез и энтероцитов тонкого кишечника. Железы вырабатывают жидкую часть сока, содержащую минеральные вещества и муцин. Ферменты сока выдел

Полостное и пристеночное пищеварение
Пищеварение в тонком кишечнике осуществляется с помощью двух механизмов: полостного и пристеночного гидролиза. При полостном пищеварении ферменты действуют на субстраты, находящиеся в полост

Функции толстого кишечника
Заключительное пищеварение происходит в толстом кишечнике. Его железистые клетки выделяют небольшое количество щелочного сока, с рН=8,0-9,0. Сок состоит из жидкой части и слизистых комочков. Жидкая

Моторная функция тонкого и толстого кишечника
Сокращения кишечника обеспечиваются гладкомышечными клетками, образующими продольный и циркулярный слои. Благодаря связям клеток между собой гладкие мышцы кишечника являются функциональным синцитие

Механизмы всасывания веществ в пищеварительном канале
Всасыванием называют процесс переноса конечных продуктов гидролиза из пищеварительного канала в межклеточную жидкость, лимфу и кровь. Главным образом оно происходит в тонком кишечнике. Его длина со

Пищевая мотивация
Потребление пищи организмом происходит в соответствии с интенсивностью пищевой потребности, которая определяется его энергетическими и пластическими затратами. Такая регуляция потребления пищи назы

Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ
Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что поступаю

Основной обмен
Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутр

Физиологические основы питания. Режимы питания
В зависимости от возраста, пола, профессии потребление белков, жиров и углеводов должно составлять: у мужчин I-IV групп Б: 96-108 г, Ж: 90-120 г, У: 382-552 г; у женщин I-IV групп Б: 82-92 г, Ж: 77

Обмен воды и минеральных веществ
Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в воде составляет 20-40 мл/кг веса. С жидкостя

Терморегуляция
Филогенетически сложились два типа регуляции температуры тела. У холоднокровных или пойкилотермных организмов интенсивность обмена веществ небольшая, поэтому низка теплопродукция. Они неспос

Функции почек. Механизмы мочеобразования
В паренхиме почек выделяется корковое и мозговое вещество. Структурной единицей почки является нефрон. В каждой почке около миллиона нефронов. Каждый нефрон состоит сосудистого клубочка, находящего

Регуляция мочеобразования
Почки имеют высокую способность к саморегуляции. Чем ниже осмотическое давление крови, тем выраженное процессы фильтрации и слабее реабсорбция и наоборот. Нервная регуляция осуществляется посредств

Невыделительнные функции почек
1. Регуляция постоянства ионного состава и объема межклеточной жидкости организма. Базисным механизмом регуляции объема крови и межклеточной жидкости является изменение содержания натрия. При увели

Мочевыведение
Моча постоянно вырабатывается в почках и по собирательным трубочкам поступает в лоханки, а затем мочеточникам в мочевой пузырь. Скорость наполнения пузыря около 50 мл/час. В это время, называемое п

Врождённые формы поведения. Безусловные рефлексы
Безусловные рефлексы - это врождённые ответные реакции организма на раздражение. Свойства безусловных рефлексов: 1. они являются врождёнными, т.е. наследуются; 2. на

Условные рефлексы, механизмы образования, значение
Условные рефлексы (УР) - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их в

Безусловное и условное торможение
Изучая закономерности ВНД, И.П. Павлов установил, что существует 2 вида торможения условных рефлексов: внешнее или безусловное и внутреннее или условное. Внешнее тормож

Динамический стереотип
Все сигналы, поступающие из внешней среды, подвергаются анализу и синтезу. Анализ - это дифференцировка, т.е. различение сигналов. Безусловнорефлекторный анализ начинается в самих рец

Структура поведенческого акта
Поведением называется комплекс внешних взаимосвязанных реакций, которые осуществляются организмом для приспособления к изменяющимся условиям среды. Наиболее просто структура поведения

Память и её значение в формировании приспособительных реакций
Огромное значение для индивидуального поведения имеют обучение и память. Выделяют генотипическую или врождённую память и фенотипическую, т.е. приобретённую память. Генотипическая памя

Физиология эмоций
Эмоции - это психические реакции, отражающие субъективное отношение индивида к объективным явлениям. Эмоции возникают в составе мотиваций и играют важную роль в формировании поведения

Функциональные состояния организма. Стресс, его физиологическое значение
Функциональным состоянием называется тот уровень активности организма, при котором выполняется та или иная его деятельность. Низшими уровнями ФС - кома, затем сон. Высшим - агрессивно-оборонительно

Физиологические механизмы сна. Значение сна. Теории сна
Сон - это долговременное функциональное состояние, характеризующееся значительным снижением нервно-психической и двигательной активности, которое необходимо для восстановления способности

Теории механизмов сна
1. Химическая теория сна. Выдвинута в прошлом веке. Считалось, что в процессе бодрствования образуются гипнотоксины, которые вызывают засыпание. В последующем была отвергнута. Однако сейчас вновь в

Типы ВНД
На основании изучения условных рефлексов и оценки внешнего поведения животных И.П. Павлов выделил 4 типа ВНД. В основу своей классификации он положил 3 показателя процессов возбуждения и торможения

Сигнальные системы. Функции речи. Речевые функции полушарий
По И.П. Павлову взаимодействие организма с внешней средой осуществляется посредством раздражителей или сигналов. В зависимости от характера, действующих на организм сигналов, он выделил две сигналь

Мышление и сознание
Мышление это процесс познавательно деятельности человека, проявляющийся обобщенным отражением явлений внешнего мира и своих внутренних переживаний. Сущность мышления состоит в способн

Формирование половой мотивации
Безусловнорефлекторные, условнорефлекторные, гуморальные механизмы регуляции половых функций Особую роль в различных формах поведения играет половое поведение. Оно необходимо для со

Адптация, ее виды и периоды
Адаптация - это приспособление строения, функций органов и организма в целом, а также популяции живых существ к изменениям окружающей среды. Различают генотипическую и

Физиологические основы трудовой деятельности
Физиология труда, является прикладным разделом физиологии человека и изучает физиологические явления, сопровождающие различные виды физического и умственного труда. Умственный труд делится

Физиология гипофиза
Гипофиз состоит из трех долей - передней, промежуточной и задней, каждая из которых является железой внутренней секреции. Заднюю долю, богато снабженную разветвлениями нервных волокон, связывающих

Регуляция секреции гипофиза
Большое значение в регуляции функций передней доли гипофиза имеют особенности ее кровоснабжения, а именно то, что кровь, оттекающая от капилляров гипоталамической области, поступает в так называемы

Гормоны щитовидной железы
В ткани щитовидной железы содержится йод, который входит в состав гормонов, образуемых фолликулами этой железы. Характерной особенностью клеток этой железы является их способность поглощать йод, та

Регуляция секреции ПЖЖ
Образование инсулина (а также глюкагона) регулируется уровнем глюкозы в крови. Увеличение содержания глюкозы в крови после приема ее больших количеств, а также при гипергликемии, связанной с напряж

Адреналин и норадреналин
Гормон мозгового слоя надпочечников – адреналин - представляет собой производное аминокислоты тирозина. Мозговой слой надпочечников секретирует также норадреналин, являющийся непосред

Кора надпочечников
В коре надпочечников различают три зоны: наружную - клубочковую, среднюю - пучковую и внутреннюю - сетчатую. Из коры надпочечника выделено около 50 кортикостероидов, однако тол

Рецепторный аппарат зрительного анализатора. Структура и функция отдельных слоев сетчатки
Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов - палочки и кол

Кожная рецепция
Кожные рецепторы. Рецепторная поверхность кожной чувствительной системы огромна - от 1,4 до 2,1 м2. В коже сосредоточено большое количество чувствительных к прикосновени

Физиология обонятельного анализатора
Рецепторы обонятельной сенсорной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути. На поверхности каждой обонятельной кле

Описание презентации Физиология системы крови Группы крови. Правила переливания по слайдам

В 1901 г. венский врач Карл Ландштейнер обнаружил, что плазма крови одних людей склеивает эритроциты других людей. Склеивание эритроцитов (агглютинация) объясняется наличием в эритроцитах антигенов (агглютиногенов), а в плазме – природных антител (агглютининов). Антигены – высокомолекулярные полимеры, несущие признаки генетически чужеродной информации

Главные носители антигенных свойств — эритроциты На мембране эритроцита- более 300 различных антигенов. Они объединяются в групповые антигенные системы. В крови каждого человека содержится индивидуальный набор специфических эритроцитарных аглютиногенов. На практике при переливании крови учитываются в основном две антигенные системы — АВ 0 и СDЕ.

Система АВО По системе АВО различают А, В – антигены в эритроцитах и альфа, бета – антитела в плазме. Склеивание эритроцитов наблюдается при встрече одноименных антигенов и антител (А с альфа, В с бета). Возможны 4 комбинации, при которых не происходит подобной встречи. Деление людей по группам крови в системе АВО основано на различных комбинациях агглютиногенов эритроцитов и агглютининов плазмы. Имеются 4 группы крови: I I О (αβ); II А (β); IIIIII В (α); IV АВ (0).

Определение групп крови в системе АВ 0 по стандартным сыворотками На чистую белую плоскость, после соответствующих записей стеклографом, нанести стандартные сыворотки первой, второй и третьей групп крови. В каждую из капель стандартной сыворотки, углом чистого предметного стекла, внести в десять раз меньшее количество крови, а через 2 -3 минуты добавить по одной капле физиологического раствора. За появлением агглютинации наблюдать в течение 5 минут. Установить группу крови.

Если в эритроцитах исследуемой крови нет антигенов, то ни в одной сыворотке агглютинации не происходит. Это первая группа О(II))

Если агглютинация произошла в сыворотке 1 и 3 групп, а во второй – не произошла, то это группа AA ((IIII))

Если агглютинация произошла в сыворотках 1 и 2 групп, а в третьей не произошла, то это группа В(В(IIIIII))

Если агглютинация произошла во всех трех сыворотках, то в исследуемой крови есть оба антигена — А и В, т. е. — это четвертая группа АВ ((IVIV).).

Резус-фактор В 1940 году Ландштейнер и Винер в эритроцитах обезьяны – макаки резус – обнаружили антиген (его назвали резус-фактор). В дальнейшем оказалось, что 85% людей белой расы имеют этот антиген. Кровь содержащая Rh. Rh -фактор в эритроцитах называется резус-положительной. Около 15 % людей не имеют Rh. Rh -фактора (резус-отрицательная кровь). В системе “ Rh. Rh — hrhr ”” около 40 антигенов: DD (85%), CC (70%), E E (30%). Естественных антител к Rh. Rh -антигену нет, но они могут вырабатываться, к примеру, если человеку с Rh. Rh -отрицательной кровью перелить Rh. Rh -положительную кровь. При первом таком переливании осложнения, как правило, не возникают, но в организме реципиента вырабатываются антитела к Rh. Rh -антигену. Повторное переливание сопровождается гемотрансфузионным шоком.

Система Rh. Rh Антитела на резус фактор не выявляются после рождения, а вырабатываются после первой сенсибилизации, т. е. попа дд ания резус-фактора в резус-отрицательную кровь. Выработанные антитела являются Ig. G , неполные антитела, поэтому они способны проходить через гематотканевые барьеры.

Резус-конфликты При переливании крови: первое переливание резус-положительной крови резус-отрицательному реципиенту вызовет только выработку антител. Агглютинации эритроцитов не будет. Второе переливание вызовет агглютинацию эритроцитов, т. к. в крови уже имеются антитела против резус-фактора (агглютинины анти DD).).

Резус-конфликты При беременности: : если у матери резус-отрицательная кровь, а у плода резус-положительная. Во время второй беременности развивается резус-конфликт. Антитела матери проходят через плацентарный барьер и вызывают агглютинацию эритроцитов плода.

Антитела системы СDE Иммунные антитела, образовавшиеся в организме резус — отрицательной женщины, беременной резус — положительным плодом, обладают способностью проникать через плаценту в организм плода и вызвать гемолиз его эритроцитов. Во время родов в кровь новорожденного ребенка поступает много антител и развивается гемолитическая болезнь. Антитела новорожденный может получить и с молоком матери.

Определение резус фактора Для определения резус-фактора берут универсальную сыворотку (в ней отсутствуют антитела по системе АВО), но содержатся анти-резус-агглютинины (анти- D). Смешиваем сыворотку и каплю крови также как и при определении групп крови по системе АВО. Результата наблюдаем через 10 -15 минут. Если происходит склеивание эритроцитов в сыворотке, значит в них есть Rh- антиген, т. е. кровь Rh -положительная. Если агглютинация не произошла – кровь Rh- отрицательная.

ПРАВИЛА, КОТОРЫЕ НЕОБХОДИМО ИСПОЛЬЗОВАТЬ ПРИ ПЕРЕЛИВАНИИ КРОВИ 11. . Для переливания (особенно больших количеств) крови используют только одногруппную кровь: у донора и реципиента должна быть одна группа. 2. Определяют группу крови реципиента и группу крови донора (даже полученную со станции переливания)

3. Проводят прямую пробу на совместимость, учитывая антигены донора (берут цельную кровь с эритроцитами) и антитела реципиента (берут сыворотку реципиента, которую получают путем центрифугирования крови).

44. Проводят обратную пробу на совместимость, учитывая антигены реципиента (берут кровь реципиента) и антитела донора (берут сыворотку донора). 55. . Проводят биологическую пробу путём дробного вливания крови по 10 мл трижды струйно по методу Безредко. Следят за самочувствием реципиента.

ЧТО ДЕЛАТЬ? При первых признаках нарушения самочувствия: озноб, боли в пояснице, холодный пот, учащение пульса, повышение АД – отключить капельницу с кровью и вливать физраствор или другой солевой раствор для разведения крови и уменьшения её вязкости.

Общая характеристика системы гемостаза Гемостаз — физиологическая система, предотвращающая кровопотерю и поддерживающая кровь в жидком состоянии. Функционально-структурными компонентами системы гемостаза являются: 1. стенка кровеносных сосудов; 2. клетки крови (в основном — тромбоциты); 3. ферментные и неферментный системы плазмы

Тромбоциты Количество – 180 – 320320 тыс. в 1 мкл Строение: безъядерные пластинки диаметром 2 -5 мкм Свойства: : 1)адгезия – способность тромбоцитов прилипать к чужеродной поверхности 2)агрегация – способность тромбоцитов склеиваться друг с другом 3) амебовидная подвижность 4) легкая разрушаемость Функции: 1) гемостатическая — участие в свертывании крови; 2) ангиотрофическая — — улучшают трофику (питание) клеток капилляров; 3) регулируют тонус сосудистой стенки (за счет выработки серотонина).

Различают 2 механизма гемостаза: сосудисто-тромбоцитарный и коагуляционный. Сосудисто-тромбоцитарный гемостаз обеспечивает остановку кровотечения в сосудах микроциркуляции. Поэтому его называют микроциркуляторным гемостазом. Он протекает в 5 этапов: а) первичный спазм сосудов (в ответ на боль выбрасываются адреналин, норадреналин, серотонин). Это способствует уменьшению кровотечения. б) адгезия (прилипание) тромбоцитов к поврежденной поверхности сосуда. в) обратимая агрегация (скучивание) тромбоцитов. При этом тромбоциты склеиваются между собой, но их структура не нарушается. г) необратимая агрегация тромбоцитов. На этом этапе тромбоциты разрушаются, образуется тромбоцитарная масса, которая закрывает дефект сосуда. д) сокращение и уплотнение (ретракция) тромбоцитарного тромба. В норме остановка кровотечения из мелких сосудов занимает 2 -4 мин.

Коагуляционный гемостаз В этом процессе участвуют тканевые, плазменные и клеточные коагулянты. Известно около 16 плазменных коагулянтов, наиболее важные из них: фибриноген, протромбин, тромбопластин, ионы Са. Процесс свертывания (гемокоагуляция) включает 3 фазы: 1. Образование протромбиназы; 2. Образование тромбина (из протромбина); 3. Переход растворимого белка фибриногена в нерастворимый — фибрин. В п ослефазе свертывания крови происходит 2 процесса: 1) уплотнение кровяного сгустка (ретракция тромба) 2) фибринолиз (растворение нитей фибрина и восстановление просвета сосуда). Этому способствует фермент – плазмин, который образуется из плазминогена (под действием активаторов — урокиназа и др.).

Образование протромбиназы Существуют 2 механизма активации протромбиназы – внешний и внутренний. Внешний механизм запускается поступлением из тканей в плазму тканевого тромбопластина, который представляет собой частицы клеточных мембран, образовавшиеся при повреждении стенок сосудов. Тканевый тромбопластин взаимодействует с VII фактором и активирует фактор IIIIII. Активный VII фактор и ионы Са Са 2+2+ образуют комплекс: VII а + III + + Са Са 2+2+ . . Этот комплекс активирует фактор Х. .

Внутренний механизм. Тромбоцитарный тромбопластин (фактор IIIIII) активирует фактор XIIXII. . За ним последовательно активируются Х II и и II Х Х факторы — образуется кальциевый комплекс: II Х, Х, VV IIIIII , Са Са 2+2+ , который активирует фактор Х. Активированный фактор Х обладает слабой тромбиназной активностью, но она усиливается в 1000 раз фактором V, в присутствии ионов кальция – этот, так называемый, тромбиназный комплекс способствует быстрому превращению протромбина в тромбин во второй фазе свертывания.

Под действием тромбина, который является протеолитическим ферментом, в 3 фазе образуется фибрин. Первый этап — расщепление фибриногена до мономеров А и В. В. Второй этап. Мономеры фибрина выстраиваются параллельно другу под действием электростатических сил и образуют фибрин-полимеры. На этом этапе фибрин-полимер является растворимым — фибрин «S». Третий этап — преобразование фибрина «S» в нерастворимый фибрин «I» , это происходит под действием фактора Х IIIIII — — фибрин-стабилизирующего.

В результате коагуляционного гемостаза образуется сгусток крови — тромб. Тромбоциты сгустка выделяют тромбостенин, обуславливающий ретракцию (уплотнение) сгустка, в основном за счет изменений нитей фибрина, которые приближаются друг к другу. Это способствует стягиванию краев раны, что облегчает ее закрытие соединительно-тканными клетками.

Фибринолитическая система В состав системы фибринолиза входят: 1) плазминоген — неактивный протеолитический фермент, который всегда содержится в плазме крови; 2) плазмин — активная форма плазминогена. 3) активаторы фибринолиза — группа веществ, которые либо сами являются протеазами, превращающими плазминоген в плазмин, или вызывают появление таких протеаз; 4) ингибиторы фибринолиза, среди которых наибольшее значение имеет αα 22 -антиплазмин.

Антикоагулянты Это вещества, препятствующие свертыванию крови. Различают первичные и вторичные антикоагулянты. 1) 1) Первичные антикоагулянты всегда присутствуют в крови. Это гепарин, антитромбопластины, антитромбины. Если их активность ослабляется, то у человека появляется склонность к тромбообразованию. 2) 2) Вторичные антикоагулянты образуются в процессе свертывания. Например, образовавшийся в 3 -ю фазу фибрин, адсорбируя на себе тромбин, способствует его инактивации (его называют антитромбином II).).

Роль эндотелия в сохранении жидкого состояния циркулирующей крови Клетки эндотелия образуют активный ингибитор агрегации тромбоцитов — простациклин. удаляет из кровотока активированные факторы коагуляционного гемостаза; создает слой антикоагулянтов на границе с кровью, синтезируя гепариноподобные вещества.

Регуляция свертывания крови Уровни регуляции системы гемостаза: Молекулярный — — обеспечивает поддержание баланса отдельных факторов. Клеточный — обеспечивает продукцию факторов, участвующих в гемостазе. Органный — обеспечивает оптимальные условия функционирования системы гемостаза на различных участках сосудистого русла. В норме свертывание происходит за 5 -10 минут. Уменьшение времени свертывания – гиперкоагуляция, увеличение – гипокоагуляция. Ускорение свертывания вызывают повышение тонуса симпатической н/с, адреналин, норадреналин.

Наука о группах крови, как один из разделов общей иммунологии, возникла на рубеже веков. В 1900 г. австрийский исследователь Карл Ландштейнер, смешивая эритроциты с нормальной сывороткой крови других людей, обнаружил, что при одних сочетаниях сыворотки и эритроцитов разных людей наблюдается агглютинация (склеивание и выпадение в осадок) эритроцитов, при других ее нет. Агглютинация возникает в результате взаимодействия присутствующих в эритроцитах антигенов - агглютиногенов - и содержащихся в плазме антител - агглютининов.

Главные агглютиногены эритроцитов - агглютиноген А и агглютиноген В, агглютинины плазмы - агглютинин а и агглютинин б.

Как было установлено К. Ландштейнером и Я.Янским, в крови одних людей совсем нет агглютиногенов (группа I), в крови других содержится только агглютиноген А (группа II), у третьих - только агглютиноген В (группа III), четвертые содержат оба агглютиногена: А и В (группа IV). Групповые антигены находятся в эритроцитах, но они найдены также в лейкоцитах и тромбоцитах.

Согласно существующей статистике, принадлежность людей к той или иной группе крови по системе АВО выглядит следующим образом. Примерно 40% населения центральной Европы имеет I (0) группу, более 40% - II (А) группу, 10% или более - III (В), около 6% - IV (АВ) группу. У 90% коренных жителей Северной Америки обнаружена принадлежность к I (0) группе.

Людей с I группой крови раньше считали универсальными донорами, т. е. их кровь могла быть перелита всем без исключения лицам. Однако теперь известно, что эта универсальность не абсолютна. Это связано с тем, что у людей с кровью I группы в довольно значительном проценте обнаружены иммунные анти-А- и анти-В-агглютинины. Переливание такой крови может привести к тяжелым последствиям и даже к летальному исходу. Эти данные послужили основанием к переливанию только одногруппной крови.



Резус-фактор

Одним из первых агглютиногенов крови человека, не входящих в систему
АВО, был резус-агглютиноген, или резус-фактор, обнаруженный К. Ландштейнером и А. Виннером в 1940 г. Он был получен при введении кровиобезьянмакак-резусов кроликам, в крови которых вырабатывали соответствующие антитела к эритроцитам обезьян. Как оказалось, эта сыворотка иммунизированных кроликов дает резко положительную реакцию агглютинации эритроцитов не только макак, но и человека. В Европе 85%людей имеют в крови этот агглютиноген, из-за чего их называют резус-положительными(Rh +), а не содержащих его- резус-отрицательными (Rh).

Особое значение приобретает определение резус-фактора во время вступления в брак. При резус-положительном отце и резус-отрицательной матери (вероятность таких браков около 60%) ребенок нередко наследует резус-фактор отца. В этом случае могут возникнуть серьезные осложнения.

У Rh матери, вынашивающей Rh -плод, организм постоянно иммунизируется резус-антигеном плода, диффундирующим через плаценту. При этом у матери происходит образование Rh-агглютининов, которые через плаценту попадают в кровь плода и вызывают агглютинацию и гемолиз его эритроцитов.

Раньше при переливании крови пользовались исключительно цельной кровью. Кроме того, не было широкой возможности переливать много крови. Считали, что при переливании нужно браховуваты только групповую принадлежность эритроцитов донора. Действительно, при введении большого количества плазмы, содержащей а-или В-агглютининов, они разбавляются в большом количестве плазмы реципиента, и титр их становится настолько низким, что они уже могут активно агглютинировать эритроциты реципиента. Поэтому считалось возможным переливать только одногруппную кровь, но и другие. Так, предлагали и группу крови, не содержащая в эритроцитах А-и В-антигены, вводить любом реципиенту. Доноров с I группой крови называли универсальными. Кровь II и III групп рекомендовали переливать также людям с IV группой крови, поэтому их причисляли к универсальным реципиентов.
Но этого делать не следует при введении значительных количеств крови, так как при этом антитела донора могут вызывать агглютинацию эритроцитов реципиента. Кроме того, надо учитывать, что в клинике вводят большие объемы крови (во время операции, травмы), а современные рекомендации для переливания крови сужены, поэтому следует использовать только кровь одной группы. В крайнем случае можно воспользоваться эритроцитами группы 0.
Конечно, нельзя переливать эритроциты донора с резус-положительным фактором реципиенту с резус-отрицательным фактором, хотя при пренебрежении этим при первом переливании крови серьезных осложнений и не будет, потому что к моменту появления антител, как правило, перелиты НЬ +-эритроциты с крови исчезнут. Исходя из этих соображений, не следует пользоваться кровью одного и того же донора при повторном переливании, поскольку обязательно к какой-либо из систем состоится иммунизация. Таким образом,
представление о универсального донора и реципиента устарело. Действительно, универсальный реципиент с IV группой крови является универсальным донором плазмы, поскольку в ней нет агглютининов. Конечно, лучшим донором может быть только сам больной. Поэтому, если есть
возможность, следует заготовить аутокрови перед операцией. Переливание крови другого человека, даже при соблюдении всех указанных выше правил, обязательно приведет к дополнительной иммунизации.

Свойства сердечной мышцы: автоматия и возбудимость.

Основные физиологические свойства сердечной мышцы.

Сердечная мышца, как и скелетная, обладает возбудимостью, способностью проводить возбуждение и сократимостью.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т. д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков- 0,8-0,9 м/с, по специальной ткани сердца-2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердии, затем-папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Автоматия сердца.

Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматии.

В сердце различают:

· рабочую мускулатуру- представленную поперечнополосатой мышцей

· атипическую или специальную- ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

Ø синоаурикулярного узла, располагающегося на задней стенке правого предсердия у места впадения полых вен;

Ø атриовентрикулярного (предсердно-желудочкого) узла находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;

Ø пучка Гиса (председно-желудочковый пучок), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса-это единственный мышечный мостик, соединяющий предсердия с желудочками.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждения из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

В нашей стране организована сеть станций переливания крови, где хранится кровь и производится ее взятие у лиц, пожелавших сдать кровь.

Переливание крови. Перед переливанием определяется группа крови донора и реципиента, Rh-принадлежность крови донора и реципиента, ставится проба на индивидуальную совместимость. Кроме того, в процессе переливания крови производят пробу на биологическую совместимость. Следует помнить, что переливать можно только кровь соответствующей группы. Например, реципиенту, имеющему II группу крови, можно переливать только кровь II группы. По жизненным показаниям возможно переливание крови I группы лицам с любой группой крови, но только в небольших количествах.

Переливание крови осуществляется в зависимости от показаний капельно (со скоростью в среднем 40- 60 капель в минуту) или струйно. Во время переливания крови врач следит за состоянием реципиента и при ухудшении состояния больного (озноб, боль в пояснице, слабость и т. д.) переливание прекращают.

Кровезамещающие жидкости (кровезаменители) - растворы, которые применяются вместо крови или плазмы для лечения некоторых заболеваний, дезинтоксикации (обезвреживания), замещения потерянной организмом жидкости или для коррекции состава крови. Наиболее простым кровезамещающим раствором является изоосмотический раствор хлорида натрия (0,85-0,9%). К плазмозаменителям относятся: коллоидные синтетические препараты, которые оказывают онкотическое действие (полиглюкин, желатиноль, гексаэтилкрахмалы), препараты, имеющие реологические свойства, т.е. улучшающие микроциркуляцию (реополиглюкин, реамберин), дезинтоксикационные препараты (неогемодез, реосорбилакт, сорбилакт) .

Физиология крови 3 Лекция 7 к форменным элементам крови относятся эритроциты (красные кровяные тельца), лейкоциты

(белые кровяные тельца), тромбоциты (кровяные пластинки).

Эритроциты имеют форму двояковогнутого диска. Диаметр их равен 7-8 мкм. В 1 л крови мужчин содержится 4,0-5,0 х 10 12/л (4,0-5,0 млн. в 1 мм3) эритроцитов, женщин -3,7-4,7 х10 9/л (3,7-4,7 млн. в 1 мм3. Повышение количества эритроцитов в крови получило название эритроцитоз , понижение - эритропения .

Функции эритроцитов.

Дыхательная функция выполняется эритроцитами за счет дыхательного пигмента гемоглобина, который обладает способностью присоединять к себе кислород и углекислый газ.

Питательная функция эритроцитов состоит в адсорбировании на их поверхности аминокислот, которые транспортируются к клеткам организма от органов пищеварения.

Защитная функция эритроцитов определяется их способностью связывать токсины (вредные, ядовитые для организма вещества) за счет наличия на поверхности эритроцитов специальных веществ белковой природы - антител. Кроме того, эритроциты принимают активное участие в свертывании крови.

Ферментативная функция эритроцитов связана с тем, что они являются носителями разнообразных ферментов.

Регуляция рН крови - осуществляется эритроцитами посредством гемоглобина. Гемоглобиновый буфер - один из мощнейших буферов, он обеспечивает 70-75% буферных свойств крови.